基于深度學(xué)習(xí)的無(wú)人機(jī)電力巡檢目標(biāo)識(shí)別技術(shù)研究

打開(kāi)文本圖片集
摘要:本文結(jié)合深度學(xué)習(xí)與無(wú)人機(jī)技術(shù)提出了基于改進(jìn)YOLOv5的電力設(shè)備缺陷檢測(cè)方法。該方法在絕緣子、桿塔等關(guān)鍵設(shè)備缺陷識(shí)別上平均準(zhǔn)確率達(dá)93.7%,較傳統(tǒng)方法提升15.2%,為提升電力巡檢效率和安全性提供了新的技術(shù)方法。
關(guān)鍵詞:深度學(xué)習(xí);無(wú)人機(jī);電力巡檢;目標(biāo)識(shí)別;YOLOv5
doi:10.3969/J.ISSN.1672-7274.2025.03.001
中圖分類(lèi)號(hào):TM 7;TP 3;V 279+.2 文獻(xiàn)標(biāo)志碼:A 文章編碼:1672-7274(2025)03-000-03
Research on Target Recognition Technology for UAV Power Inspection
Based on Deep Learning
LIU Hao1, LU Zhenghe1, BASANG Zerenang1, REN Zexin2, WANG Bangxing2
(1. State Grid Sichuan Electric Power Company Liangshan Power Supply Company, Xichang 615000, China;
2. Zhongke Fangcun Zhiwei (Nanjing) Technology Co., Ltd., Nanjing 211135, China)
Abstract: This paper proposes a power equipment defect detection method combining deep learning and unmanned aerial vehicle (UAV) technology based on the improved YOLOv5. This method achieves an average accuracy rate of 93.7% in the identification of defects in key equipment such as insulators and transmission towers, which is 15.2% higher than that of traditional methods, providing a new technology for improving the efficiency and safety of power inspection.
Keywords: deep learning; unmanned aerial vehicle (UAV); power inspection; target recognition; YOLOv5
0 引言
電力系統(tǒng)是國(guó)民經(jīng)濟(jì)的重要基礎(chǔ)設(shè)施,其安全穩(wěn)定運(yùn)行對(duì)社會(huì)發(fā)展至關(guān)重要。(剩余4094字)