應(yīng)用 Ωt. -SNE流形學(xué)習(xí)方法的盾構(gòu)刀盤磨損信號(hào)降維

打開文本圖片集
關(guān)鍵詞:盾構(gòu)刀盤;性能評(píng)估: ;t- 分布隨機(jī)鄰域嵌入;信號(hào)降維中圖分類號(hào):U455 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1671-5276(2025)03-0096-04
Dimension Reduction of Shield Cutterhead Wear Signal by t -SNE Manifold Learning Method
HUANG Yuhua1,LI Feng2 (1.School of Architecture and Electrical Engineering,Hezhou University,Hezhou 532899,China; 2.School of Civil Engineering,Guangxi University of Science and Technology,Liuzhou 545oo6,China)
Abstract:Inordertoenhancetheabilityofmonitoringtherunningstabilityofshieldcuterhead,amethodfordimensionality reduction and performance evaluation of torque vibration signal of shield cutterhead based on t- SNE manifold learning was designed.Acording totheactual parametersof shieldequipment,theidentificationofcuterstateparameters wasrealizedby data driven.The results show that compared with ISOMap,LLE,KPCA,etc.,using t -SNEmanifold dimensionalityreduction can obtain a longer t -distribution,so that thelow-dimensional far end pointswillhave a larger low-dimensional interval,and canaccuratelyclasifynormalanddegeneratesamples,andaccuratelyidentifyhigh-dimensionaldatacontaining low一 dimensional manifold.Thevariationof normaloperatingconditionsandfaultmaintenancesampling interval in Markov spaceis small,andtheuseof time-dependent Markovdistance measure toevaluatetoolperformancecanobtain higherprecision, efctivelyeliminatethecorrelationbetween diferentdimensions,and havebeterperformancethanEuclideandistance.
Keywords:cutter head of shield tunneling;performance evaluation; t- distributed random neighborhood embedding;signal dimension reduction
0 引言
刀盤在盾構(gòu)裝備中是一個(gè)核心受力部件,能夠?qū)崿F(xiàn)掘進(jìn)并維持開挖面穩(wěn)定,直接影響掘進(jìn)效率[1-2]。(剩余4443字)