基于預(yù)測(cè)劃分卷積神經(jīng)網(wǎng)絡(luò)的全景視頻快速編碼算法

打開(kāi)文本圖片集
Fast coding algorithm based on predictive partition convolutional neural network for 36O-degree video
Xiang Hai,Chen Fen ↑ ,Qin Yiqing,LiXu,Peng Zongju (SchoolofElectrical&ElectronicEnginering,Chongqing UniversityofTechnology,Chongqing 40oo54,China)
Abstract:Inorder tosolve theproblem of excessive complexityof360-degree video basedonequirectangularprojection (ERP)of versatile videocoding(VVC),thispaperproposedafast CU partitionalgorithmbasedonpredictivepartitionconvolutionaleuralnetwork(PP-CNN).Firstly,this paperanalyzed thepartition characteristicsofCUsof ERP360-degree video indierentlatituderegionsandintroducedthelatitudefeatureinthisproposedalgorithm.Secondly,thealgorithmestablished 360-degree videodatasetwiththecharacteristicsoflatitudeandquantizationparameters.Then,this methoddesignedalightweightPP-CNN model topredicttheedgedivision informationofCUs.Next,thealgorithm basedontheoutputof PP-CNN modeldevelopedadual-thresholdCUfastpartitiondecisionschemetoremoveredundantpartitionpaterns.Finaly,thispaper designed threedecisionmodes,fast,balancedandperformanceaccording totheneeds ofcoding scenarios.Theextensive experimental results show that the proposed algorithm is able to shorten the coding time by 39.31%~61.95% on average under the full intra-frame coding configuration at the BDBR increases by only 0.37%~1 43% compared with the official testbed VTM-14.O-36olib13.1,indicatingthatthealgorithmcanrealizefastercoding speedunderthepremiseof guaranteeingcoding performance.
Keywords:ERP36O-degreevideo;latitude;CUpartition;PP-CNN
0 引言
隨著通信技術(shù)和多媒體技術(shù)的快速發(fā)展,超高清視頻逐漸成為人們主流的觀看選擇。(剩余13978字)