特黄三级爱爱视频|国产1区2区强奸|舌L子伦熟妇aV|日韩美腿激情一区|6月丁香综合久久|一级毛片免费试看|在线黄色电影免费|国产主播自拍一区|99精品热爱视频|亚洲黄色先锋一区

基于用戶選擇的魯棒與隱私保護(hù)聯(lián)邦學(xué)習(xí)方案

  • 打印
  • 收藏
收藏成功


打開文本圖片集

Robust and privacy-preserving federated learning scheme based on user selection

Wang Xiaoming1.2,Huang Binrui2+ (1.Colegeflelcge;ofo gy ,Jinan University,Guangzhou 510632,China)

Abstract:Tocounterthevulnerabilitiesofmodelparameters toinferenceandByzantineattcksduringfederatedlearning,this paperproposed arobustand privacy-preserving federated learning scheme basedonuserselection,enhancing thesecurityand reliabilityofmodel training.Itfirstlydesignedauserselectionalgorithmbasedontheconceptof groups constructedonfog servers.Thepurposeofthisalgorithmwastoselectuserswithhighcreditscores tocontribute tothetrainingof theglobal model.Next,itconstructedamethodforfiltering local modelparametersandupdatinguserscoresusingthetestsetfromthe cloudserver,efectivelymitigatingtheinterference frommalicious usersinthemodel training processandprogresivelyexcludingthemfromtraining,therebyenhancingtherobustnessoftheglobalmodel.Finally,itdesignedalightweightencryption algorithmbasedoncloud-fogcollaboration,whichnotonlyefectivelyprotectedtheprivacyofuserlocalmodelparametersbut alsoensuredtheirsecurityduringtheagregationprocess,whilemaintaining highcomputationalandcommunicationeffciency. Buildinguponthecomputationalchallngeof theDifie-Hellman(CDH)problem,itdemonstratedthesecurityof thisscheme, whichresistedvarious atacks,ensuring theglobal model’srobustness whilesafeguarding userdata privacy.Bycomparing with existing schemes andthrough performance analysisand experimental results,the proposal exceled in eficiency.When facing maliciousattackers,the accuracy rates of directly aggregated global models dropped to about 65% ,whereas this scheme maintainedanaccuracyrateclosetothatofasenariowithoutatacks,ffctivelymtigatingtheimpactofatacks.Tus,thissolution offersapractical and efective strategy for federated learning systems todeal with inference and Byzantineattcks.

Keywords:federated learning;robustness;privacy preservation;selecting user

0 引言

隨著機(jī)器學(xué)習(xí)技術(shù)的快速發(fā)展,人工智能在各個(gè)領(lǐng)域的應(yīng)用得到廣泛發(fā)展。(剩余24804字)

目錄
monitor