SP-CPGCN:用于塵肺病分期的超像素先驗因果感知圖卷積網(wǎng)絡

打開文本圖片集
SP-CPGCN : causality-perception graph convolutional network on superpixel prior for pneumoconiosis staging
Wang Yueyingla,Ji Guohuala,F(xiàn)eng Weiyi1a,Zhao Juanjuanla,Ibt,Qiang Yanla.2,MaJianfenla,Shi Yiwei 3 ,Yang Fan4 (1.a.Collegfeeceeece)odfrenUiesit 030024,Chna;2holfSfare,NUniersitfhnaTaianO3OhnaDeptofulmary&ricalCaredicine ShanxiKeybsoeosliclUsi 030012,China;4Ocupioalisesereetio&ontroltefisnCal&Electricity(Gou)anna)
Abstract:Toaddress thelowaccuracyinpneumoconiosisstaging causedbythesmallandthinpneumoconiosis fociandthe influenceof non-causal features inexistingdeeplearning methods,thispaperproposedacausality-perceptiongraph convolutionalnetworkonsuperpixelpriors(SP-CPGCN).Themethodextractedlocal,subtlefeaturesbyperforming featureextractiononsuperpixelsratherthantheentirechestradiograph.The method constructedagraph network byfullyconsidering the spatial proximityandfeaturesimilarityamongnodes,anddesignedahierarchicalaggegatedgraphconvolutionalnetwork to enableinformationtransferandfeatureintegrationacrossdiffrentdepths.Aditionally,themethodemployedadaptivecausal inferenceongraphconvolutionalnetworks,usingacausalinterventionstrategythatcombinedinterventionlossandstabilityloss to avoidheinterfereneof non-causalfeatures.Itlsointroducedanintraclassconsistencylosstoalance individual-specific features with group-universal features.Thevalidationresultsonaclinicalpneumoconiosischestradiograph datasetshowthat SP-CPGCN achieved an accuracy of 82.4% ,a precision of 78.9% ,a sensitivity of 77.3% ,a specificity of 88.6% ,and an AUC of 90.3% ,outperforming other methods. The experimental results show that SP-CPGCN efectively improves the accuracyand stability of pneumoconiosis staging and provides areliablenew method for automated medical diagnosis.
'ey words:graph convolutional network(GNN);causal inference; superpixel; chest X-ray;pneumoconiosis stagi
0 引言
塵肺病是一種不可逆轉(zhuǎn)的呼吸系統(tǒng)疾病。(剩余19069字)