基于混合深度強(qiáng)化學(xué)習(xí)的云制造云邊協(xié)同聯(lián)合卸載策略

打開(kāi)文本圖片集
Joint offloading strategy for cloud manufacturing based on hybrid deep reinforcement learning in cloud-edge collaboration
Zhang Yaru,Guo Yinzhang? (Colegeof ComputerScience&Technology,Taiyuan UniversityofScience&Technology,TaiyuanO3o024,China)
Abstract:Toaddress theissueofreal-time perceptiondata frommanufacturingresources being dificult toprocess promptlyin acloud-edgecollaborative cloud manufacturingenvironment,considering uncertainfactors suchas the limited computingresources attheedge,dynamicallychanging network conditions,andtaskloads,thispaper proposedacloud-edgecolaborative jointoffloading strategybasedonmixed-baseddeepreinforcementlearning(M-DRL).Firstly,thisstrategyestablishedajoint ffloadigmodelbycombiningdiscretemodeloffloadinginthecloudwithcontinuoustaskoffloadingattheedge.Secondly, this strategydefinedtheoptimizationproblemasaMDPtominimizethetotalcostofdelayandenergyconsumptionoveraperiod. Finally,thispaper used the M -DRL algorithm,which utilized an integrated exploration strategy of DDPG and DQNand introducedalongshort-termmemory network(LSTM)intothenetworkarchitecture,tosolvethisoptimizationproblem.Simulation results showthatcompared with some existing ofloadingalgorithms,the M-DRL method has goodconvergence and Stability, andsignificantlyreduces thetotalsystemcost.Itprovidesanefectivesolutionforthetimelyprocessingofmanufacturingresource perception data.
Keywords:cloudmanufacturing;cloud-edgecolaboration;jointofloading;LSTMreinforcementlearning;Markovdecision process(MDP)
0 引言
云制造作為一種新興的生產(chǎn)模式,以前所未有的速度改變著全球制造業(yè)的格局。(剩余20442字)