基于生成對抗網(wǎng)絡(luò)與漸進(jìn)式融合的多模態(tài)實(shí)體對齊

打開文本圖片集
Multimodal entity alignment based on dual-generator shared-adversarial network
Feng Guanga?,Zheng Runting?,Liu Tianxiang?,Yang Yanru?,Lin Jianzhonga, Zhong Tinga,HuangRongcan?,XiangFeng?,LiWeichenb (a.SchoolofAutomation,b.SchoolofComputerScience,Guangdong UniversityofTechnology,Guangzhou510o6,China)
Abstract:Inthefieldofeducation,knowledgegraph fusionplaysacrucialrole.Asacore technologyof knowledge graphfusion,entityalignmentaistoidentifyequivalent entitypairsacrossmultiple knowledge graphs.Most existing entityalignment methodsassume thateachsourceentityhasacorresponding entityinthetargetknowledge graph.However,whenusingcrosslingualandcros-raphetitysets,theproblemofdanglingentitiesarises.Toaddresstisissue,thispaperproposedthedualgeneratorshared-adversarial network entityalignment model(DGSAN-EA).This modelutilized partialparametersharig and anoptimalselectionstrategytotraintwogenerators,selectingtheoptimalgneatortoconditionallgenerateewetisacoss knowledgegraphs,therebyenhancing thedatasetand solving thedangling entityproblem.Furthermore,aprogressive fusion strategyandtheintroductionofdistributionconsistencylossfunctionefectielyresolvethedistortionoffusedfeatureformationandthemisalignmentbetweenmodalitiesinmultimodalentityalignment.Validationonmultiplepublicdatasetsshows that compared to existing multimodal entityalignment models,DGSAN-EAachieveshigher hit@ kand MMRscores,demonstrating itseffectiveness in entity alignment tasks.
Key words:knowledge graph(KG);entity alignment;adversarial network;dual generator;parameter sharing;progresive fusion;distribution consistency
0 引言
在大數(shù)據(jù)時(shí)代背景下,知識圖譜(KG)作為結(jié)構(gòu)化知識表示的重要工具,其應(yīng)用已擴(kuò)展至教育、醫(yī)療、金融等關(guān)鍵領(lǐng)域。(剩余22678字)