基于句子轉(zhuǎn)換和雙注意力機制的歸納關(guān)系預測

打開文本圖片集
Inductive relation prediction based on sentence Transformer and dual attention mechanism
Li Weijun a,b? ,Liu Xueyang2,Liu Shixia,Wang Ziyia,Ding Jianpinga,Su Yileia (a.Colegeofuene&oKbafgs&asellgentossnofateEcs sion,North Minzu University,Yinchuan75oo21,China)
Abstract:Relation predictionisaimportant task in knowledgegraphcompletion,aimedat predicting mising relationships between entities.Existing inductiverelationprediction methodsoften facechalenges inadequatelymodeling semanticand structural information.Toaddress thisisse,thispaper proposedaninductiverelation predictionmodel basedonsentence transformationandadual-atentionmechanism.Theproposedmethodenhancedentitysemanticrepresentationsbyautomaticallyretrievingdescritionsandincorporatesadual-atentionmechanism,whichonsiderededgeandelationawarenes,toacu ratelymodelthecomplexinteractionsbetweeentities.Firstly,itextractedtheclosedsubgraphofthetargettripleanduseda random walk strategytosearchformuli-hoprelational paths.Thesetriplesand pathswerethen transformedinto natural language sentences,generating semanticall rich sentence embeddings.Next,it updated the subgraph embeddings using GCN andbidirectionalGRU,combiningsentenceandsubgraphembeddings tocapturebothstructuralandsemanticinformationExperimentalresultsonthree public datasets—WN18RR,F(xiàn)B15k-237,andNELL-995—demonstratethattheproposed method outperformsexisting methodsinbothtransformationandinductiverelationpredictiontasks,validatingtheimportanceof the dual-attention mechanismandsentence transformationin improving model performance.Thisapproach efectively enhances the accuracy and efficiency of relation prediction in knowledge graphs.
Key words:knowledge graph(KG);inductiverelation prediction;sentence Transformer;dual atention mechanism;random walk pathfinding strategy
0 引言
知識圖譜(KG)是一種用于表示和存儲客觀世界知識的圖形化知識庫,通過三元組方式進行形式化描述,廣泛應用于網(wǎng)絡搜索[1]、社區(qū)檢測[2]和推薦系統(tǒng)[3]等任務。(剩余17867字)