一種用于機(jī)器聲音異常檢測的ARViTrans方法

打開文本圖片集
doi:10.19734/j.issn.1001-3695.2024.10.0365
ARViTrans method for machine sound anomaly detection
ChenLonga,b,Guo Fabina,bt,Huang Xiaoweia,b,Lu Yashia,b (a.Schoolofifcaellgee&igtdslqpntStatesEaoFultredico&tee University,Hefei ,China)
Abstract:Inordertosolvetheproblems thattheexisting machine soundanomalydetection methodsonly focus onthe single featuresof the time,frequencyorchanneldimensions,ignoringthemutualconnectionbetweenthespectralfeaturesandthe timeseriesinformation,andtheinitial featurelossleads toinaccurate fitingof thesampledatadistribution,thuscausing a highanomaly mised detectionrateandfalse alarmrate,this paper proposedARViTrans,amachine sound anomalydetection methodthatintegratedatentionmechanismsandskipconnections.Firstlythispaperproposedathree-dimensionalicient coordinateatentionmechanismstocollaborativelycapturethetimedomain,frequencydomainandchanneldimensionfeatures through thedecouplingoperationofthefeaturespace.Secondly,itusedMobileViTasthebackbonenetworkanddesignedthe RES-MoViT module toreplacethe original MobileViT module.Skipconnections captured the information between the input andoutputand beterfitthesampledata distribution.Thegradientrefluxreduced therepeatedlearningof similarfeatureparametersandimprovedtheparameterutilizationeficiency.Finally,itcomparedtheexperimentalresultsontheMMdataset with the AE and MobileNetV2 of the DCASE Task2 baseline system. The AUC improves by 10.14% and 10.26% ,respectively.The pAUC improves by 13.40% and 6.50% ,respectively. The experimental results indicate that the proposed method caneffectivelycapturethemutualconnectionbetween featuresofdiferent dimensions while maintainingalowmodelcomplexity,improve the accuracy of anomaly detection and reduce the false alarm rate.
Key words:anomaly detection;MobileViT;attention mechanism;residual connection;unsupervise
0 引言
近年來,工業(yè)機(jī)器設(shè)備的狀態(tài)監(jiān)測在工廠自動化領(lǐng)域中發(fā)揮著至關(guān)重要的作用[1]。(剩余21819字)