基于LCVAE-CNN的多任務(wù)室內(nèi)Wi-Fi指紋定位方法

打開文本圖片集
Multi-task indoor Wi-Fi fingerprinting positioning method basedonLCVAE-CNN
WuShixun,ZengXinrui?,XuKai,Lan Zhangli,ZhangMiao,Jin Yue (Schoolof Information Science&Engineering,Chongqing Jiaotong University,Chongqing 40074,China)
Abstract:Indor Wi-Fireceivedsignal strengthindicator(RSI)fingerprintingwidelysupportslocation-basedservices. However,itfaceschallengessuchasthediffcultyofdatacolectionandsevereRSIfluctuationscausedbydynamicenvironmentalchanges,which hinderachieving high-acuracylocalization.Toimprove localizationaccuracyunderdatascarcityand dynamic environments,thispaper proposedadual-encoder structurethatindependentlyprocessedRSIdataandlocationcoor dinates.Thestudyintroducedageographicinformationlossfunctionandconstructedalocationconditionalvariationalautoencoder(LCVAE)model togenerate fingerprint data with geographicaccuracy,enhancing the localization model’sperformance.Aditionally,theresearchdesignedasharedconvolutional neuralnetwork(CNN)feature extractionlayer,ntegrating bothclasificationandregressionfunctions,andpresentedamultitask indoor Wi-Fifingerprintpositioning methodbasedon LCVAE-CNN.Experimental resultsshow that theproposed LCVAE-CNN methodachieves aflorclasification accuracyof 98.80% and a mean positioning error(MPE) of 6.79 meters on the UJIIndoorLoc dataset,and 97.22% and 5.44 meters respectivelyonthe Tamperedataset.Comparedtofiveexisting methods,theapproach improvesfloorclassificationaccuracyby atleast 1.9 percentage points and reduces MPE by a minimum of 19% :
Key words:indoor positioning;LCVAE;CNN;data augmentation
0 引言
基于位置的服務(wù)(LBS)在導(dǎo)航、物流、游戲、人員跟蹤等領(lǐng)域發(fā)揮著重要作用。(剩余17365字)