邊緣計算中動態(tài)服務(wù)器部署與任務(wù)卸載聯(lián)合優(yōu)化算法

打開文本圖片集
中圖分類號:TP393 文獻標志碼:A 文章編號:1001-3695(2025)06-031-1830-08
doi: 10.19734/j. issn.1001-3695.2024.11.0462
Joint optimization algorithm for dynamic server deployment and task offloading in edge computing
BaiWenchao,Lu Xianling? (SchoolofInternetofThings,JiangnanUniversity,WuxiJiangsu214122,China)
Abstract:Inmobileedgecomputing,thefixedlocations of edgeserverdeploymentscanleadtoimbalancedresourceutilizationof edgeservers,resultinginincreasedlatencyandenergyconsumptionduringthetask ofloading process.Toaddressthis issue,thispaperproposedaierarchicalreiforcementlearing-basedjointoptimizationalgorithm.Firstly,itdecomposedthe problemofedge serverplacementand task ofloading and transformedthemintoabi-Markovdecision processThen,itconstructedaglobalintellgentagentmodelforhigher-leveledgeserverdeploymentusingthedeepQ-network,andaccelerated modelconvergencebyintroducingthe K-means algorithmtoprovide high-qualitysamplesforthehigher-layer policy.Itbuilta lower-layer multi-agentmodelfortaskofloadingusingthemulti-agentproximalpolicyoptimizationalgorithm,andimproved trainingstabilitybyintroducingstatenormalizationtoreducethestatesfeaturescalediferencesinthelower-layerpolicy.Finally,itachievedtheultimateoptimizationgoaltroughalternatingoptimizationofthehigher-layerandlower-layerpolicies. Simulationresults indicatethattheproposedalgorithmcanachieveoptimal serverdeploymentandtask ofloading strategies, comparedtorandomstrategiesandotherreinforcementlearningalgorithm,and itdemonstratesgreater benefitsintermsof model training efficiency,target rewards,and load balancing metrics.
Key words:edge computing;task ofloading;edge server deployment;hierarchical reinforcement learning
0 引言
隨著5G和6G技術(shù)的高速發(fā)展,越來越多的計算密集型應(yīng)用出現(xiàn)[1],如虛擬現(xiàn)實和面部識別等。(剩余20850字)