基于多級多特征混合模型的白血病亞型自動分類

打開文本圖片集
中圖分類號:TP391 文獻(xiàn)標(biāo)志碼:A 文章編號:1001-3695(2025)06-038-1880-07
doi:10.19734/j.issn.1001-3695.2024.08.0354
Automatic classification of leukemia subtypes based on multi-scale multi-feature hybrid model
Gao Mingyang1,Geng Yan2,Yu Xiao3,Pei Bo4,Zhao Juanjuan1,Qiang Yan1,5t(1.ColegeofmuterSece &Tooy(lgeofatSce),anUiestofogin;2.SchoolfsieicalciediclUesitinasspialfieclUTaiyuanO3Uesfd6UfeUf030051,China)
Abstract:Leukemia,ahighlyconcealedcancer,presentssignificantchalengesinearlydetection,makingitafocalpointfor medical professionals.Existing fine-grained clasificationmodelsstrugglewithsmallsampleimbalanceddatasets,leadingto poorperformance in classfying leukemiasubtypes.Toaddressthese issuesandacceleratedoctors’diagnosticspeed while shortening treatment time,this paperproposedamulti-scalemulti-feature hybrid model(MSMFHM)fortheautomaticclassificationofleukemiasubtypesappicable tosmallsampledatasets.The modelfirstly extractedmulti-levelstructural features from imagesusingamulti-scalefeature extractionframeworkcombined withscalingoperationsandaCNNbackbone.Next,amultiscalefusion modulewith atention mechanisms integratedthesemulti-level structural featuresandextracted fine-grained features,effectivelyleveraging therobustnessofCNNinductivebiasandthecomplexglobalmodelingcapabilitiesofTransformers.Finally,toenhance robustnessand mitigate overfiting issues causedbysmallsamples,amulti-feature hybrid module combined texturefeatures withfine-grained features beforeclasification.Adatasetof7156leukemiacellimages,along with otherrelevantpublicdatasets,wascollctedtoevaluatethismethod.Theproposedmodelachievesclasificationaccuraciesof (204號 93.03% and 99.42% on private and public datasets,respectively,outperforming other advanced models. This method accuratelydistinguishedacute leukemia subtypecellsandservesasanefectivedesignapproach forcomputer-aideddiagnosisof leukemia.
Key words:leukemia;medical image processing;multi-scale feature fusion; Transformer
0 引言
全球造成成千上萬人死亡[1]。(剩余17275字)