特黄三级爱爱视频|国产1区2区强奸|舌L子伦熟妇aV|日韩美腿激情一区|6月丁香综合久久|一级毛片免费试看|在线黄色电影免费|国产主播自拍一区|99精品热爱视频|亚洲黄色先锋一区

基于多擾動策略的中文對抗樣本生成方法

  • 打印
  • 收藏
收藏成功


打開文本圖片集

Chinese adversarial example generation method based on multi-disturbance strategy

Wang Chundong1,2,Zhu Wenying1,2,Lin Hao1,2(1.Scholofuee&inUesitna;NlEforComputer VirusPrevention&Control Technology,Tianjin 3Oo384,China)

Abstract:Toaddress thevulnerabilityofdeepneuralnetworkstoadversarialsamplesandthelackofhigh-qualityadversarial samples inthe Chinese context,the method introduced a new Chinese adversarial sample generation method named CMDS.In thekeywordselectionstage,theScore functionusedidentifiespositions whereperturbationscouldbeadded efectively,nsuring theadversarialsamples werebothreadableanddificulttodetect.Duringtheadversarialsamplegeneration phase,themethod fullexploited characteristicsunique to Chinese,consideringaspectssuchas character shape,meaning,andregion-specific homophones.Variousperturbationstrategies,includingsimilarcharacters,syonyms,homophones,andwordoderdisuption were employedalongwitha multi-priorityperturbation strategy to generateadversarial samples.Finally,aperturbationrate thresholdcontroledteoutput,eliminatingsamplesthatdiferedtoogreatlyfromteriginaltext.Folowingthis,asrsofexperimentscompared CMDS with baselinemethods to exploretheimpact of perturbation threshold sizes,involved humanevaluations,andconductedreal-worldattack tests.These experimentsconfimtheefectivenessandtransferabilityofCMDSinenhancing model securityResultsshowthat CMDS surpassesbaseline methods in terms of attck successratebyupto36.9 percentagepointsandimproves modelsecuritybymore than3Opercentagepoints.The generatedadversarialsamplesareofhighquality and demonstrate strong generalizability.

Key words:deep neural network;natural language procesing(NLP);Chineseadversarial example;multi-disturbance

0引言

近些年來,人工智能技術(shù)快速發(fā)展使其在計算機(jī)視覺[1]自然語言處理[2]、數(shù)據(jù)挖掘[3]、機(jī)器翻譯[4]等領(lǐng)域有著重要的研究和應(yīng)用,但深度神經(jīng)網(wǎng)絡(luò)的可解釋性相對較差[5],難以解釋其最終的輸出結(jié)果。(剩余18252字)

目錄
monitor