一種面向情緒壓力分布外檢測的多任務(wù)跨模態(tài)學習方法

打開文本圖片集
中圖分類號:TP391 文獻標志碼:A 文章編號:1001-3695(2025)06-018-1734-08
doi:10.19734/j. issn.1001-3695.2024.10.0457
Multi-task cross-modal learning approach for out-of-distribution detection of emotional stress
Wan Yichen 1,2 , Xing Kai 1,2? ,Liu Yu3,Yang Hui4,Xu Junhan12,Yuan Yanxue 1,2 (20 (1.SchoolofomputerSiee &Tcholog,Uniersitofcince&TholfCina,Hefe6,Cha.SuzhostuefrAd vancedResearch,Unierstyofience&echologfina,SuzouJangsu5o,hina;3NnjingDrumowrHsptal,jing 210008,China;4.SchoolofLife Sciences,NorthwesternPolytechnical University,Xi’an71oo72,China)
Abstract:Recent research indicates that emotional stress detectionsystemsbasedon PPG signalscan bea potential convenient solution.However,PPG-based methods usuallyinduce severe OOD issues when detecting stressin previouslyunseen subjects duetosignificantvariations inPPGsignalsacross individuals.Toaddressthischallnge,thispaperproposedarossmodal stressdetection model basedonmulti-task learning(CSMT).Byintroducing ECG signalreconstructionand multiple cardiovascular feature prediction asauxiliarytasks toenhancethefeatureextractioncapabilityofPPG signals,theproposed methodperformedcollaborativeoptimizationofPPG-based stress detectioninhigh-dimensionalrepresentationspace,thereby learning robuststressdetectionrepresentationsacrossindividuals.Experimentalresultsonthe WESADdatasetdemonstrate that inleave-one-subject-out validation tests,CSMT achieves best accuracy and F1 scores compared to existing methods in both thre-class (neutral/stress/amusement)andbinary(stress/non-stress)clasificationtasks,meanwhileefectivelymitigating theOODgeneralization probleminstressdetection.Theablation experimentsfurthervalidatetheefectiveness ofCSMTin enhancing model generalization capability.
Key Words:multi-task learning;photoplethysmography(PPG); stress detection; out-of-distribution(OOD)issues
0 引言
情緒壓力是一種復雜的生理心理反應(yīng),長期或慢性的情緒壓力會對人體的呼吸系統(tǒng)、心血管系統(tǒng)及內(nèi)分泌系統(tǒng)等產(chǎn)生嚴重的不良影響[1],增加患焦慮癥、抑郁癥、心臟病以及注意力障礙等身心健康問題的風險[2]。(剩余20369字)