迭代偽點(diǎn)云生成的3D目標(biāo)檢測(cè)

打開(kāi)文本圖片集
3D object detection based on iterative pseudo point cloud generation
Sun Lihui?,Wang Chuyao (SchoolofManagementScience&IforationEnginering,HebeiUniersityfconomics&Businss,ijzangO5OChina)
Abstract:3Dobject detection iscrucial forautonomous driving.However,incomplex scenarios,LiDAR oftenstruggles to capture complete point-clouddatadue todistance andocclusion,afectingdetection accuracy.To addressthis,the paperpro poseda3Dobject detectionmethodbasedoniterativepseudo-point-cloudgeneration(IG-RCNN).Firstly,itintroduceda channel sparsepartialconvolution(CSPConv)module inthe3Dvoxel backbone toreduce channel redundancyand fuse semanticinformationfrom diferentreceptivefields,enhancing feature fusion.Secondly,iterativerefinementgeneratedhighqualitypseudo-pointclouds,providing efectiveguidanceforthesuggestionboxandimprovingdetectionacuracy.Experiments on the KITTI dataset show that the algorithm outperforms PV-RCNN,with a 3.89% and 2. 73% accuracy improvement for pedestrians andcyclists,respectively,under harddificulty.Thisdemonstrates thealgorithm’ssuperiorityinprocesingsparse point clouddata,especiallyindetectingsmallojects likepedestrians and cyists,shows strongerrobustnessandaccuracy
Key words:autonomous driving;driver asistance system;3D object detection;pseudo-point cloud generation
0 引言
近年來(lái)隨著自動(dòng)駕駛技術(shù)的快速發(fā)展,人們對(duì)車(chē)輛感知和理解周?chē)h(huán)境的要求不斷提高,3D目標(biāo)檢測(cè)技術(shù)受到了極大的關(guān)注。(剩余14348字)