基于ABSA與動(dòng)態(tài)少樣本提示的主觀知識(shí)對(duì)話回復(fù)生成模型

打開文本圖片集
Subjective knowledge dialogue response generation model based on ABSA and dynamic few-shot prompting
Rao Dongning,Zhuang Jietao (School ofComputers,Guangdong UniversityofTechnology,Guangzhou 51ooo6,China)
Abstract:Inthelatest task-oriented dialoguesystem challenges,efectivelyutilizing subjective knowledge(e.g.,personal opinions)iscrucialforaddresingusers’specificneeds.However,duetotheiherentlysubjectivenatureofsuchknowledge, howto efectively integrate and leveragethis information hasbecome a key focus of research.This paper proposeda method called DynSense,aimedataddresing thechallngeof generatingcomprehensiveand generalizedresponsesfrommultiplerelevant subjective user opinions.DynSense firstlyemployedaspect-basedsentiment analysis (ABSA)to parse the aspects and sentiment polarities withinsubjective knowledge snippets,aligning them with theuser’squery.Then,it utilizedanadvanced dialoguemodel thatcombined thedialoguecontext withABSA-enhanced information to generateresponses.AspeciallydesignedDynMatchalgorithm guidedthe model to generate morerelevantresponses bydynamicallselecting high-quality knowledgefragmentsmost similartothecurrentqueryasfew-shot prompts.The experimental resultsdemonstrate thatDynSense exhibits exceptionalabilityincapturing latentsemantic featuresand emotional tendencies,generating precise,comprehensive, andhighlyalignedresponses basedonpastuserreviews.Compared toexisting models,DynSenseshowssignificantimprovements across various evaluation metrics on the SK-TOD benchmark.
Key words:task-oriented dialogue systems;subjectiveknowledge;aspect-based sentiment analysis (ABSA);dynamic fewshot prompts
0引言
經(jīng)典的任務(wù)導(dǎo)向型對(duì)話系統(tǒng)主要依賴于事實(shí)性知識(shí),例如文獻(xiàn)[1\~4]中所使用的常見(jiàn)問(wèn)題(FAQ)數(shù)據(jù)庫(kù)。(剩余18756字)