結(jié)合多尺度特征與局部采樣描述的多模態(tài)圖像配準方法
Research on multimodal image registration method combining multi-scale features and local sampling description
Jia Zhiyou,Wang Guogang (School of Information Enginering,Shenyang Chemical University,Shenyang11O142,China)
Abstract:Aimingatthematching dificultiescausedbytheexistenceofserious geometricdiferencesandnonlinearntensity diference(NID)indiferentmodal images,this paperproposedamultimodal imagealignmentmethodcombining multi-scale featureswithalocalsamplingdescription.Firstly,themethodintroducedanonlineardifusionequationtoconstructanonlinearscalespace,andthen itcombineda phaseconsistencyandorientedFASTandrotatedBRIEF(ORB)algorithm to obtain multi-scalestable feature points.Then,the method proposedarotation-invariant doubleGaussiansamplingdescriptor,which could robustly span the rotation difference of [0°,360°) in the presence of NID. Finally,the method introduced an image recoverystrategy.The methodobtainedtheoptimal geometrictransformationmodel through primarymatching,corected the geometricdiferences existingbetween images,andthenperformed secondarymatching toimprovethematchingaccuracy. Experiments on multimodal data sets inremote sensing,medicine,andcomputer visionshowthattheroot-mean-squareerorof the proposed method can reach within 1.5 pixels and the correct matching rate can exceed 98% when there are geometric diferencessuchasscaleandrotation.Theresultsdemonstrate that this methodcanovercometheinfluenceof nonlinearradiation difference between images and achieve high precision registration.
Keywords:multimodalimages registration;nonlinear scale space;phase coherence;double Gausian sampling descriptor; nonlinear radial disparity
0 引言
圖像匹配是計算機視覺領(lǐng)域的一個基礎(chǔ)和關(guān)鍵問題,其目的是在兩幅或多幅圖像中提取可靠的特征對應(yīng),使之成為圖像融合、圖像檢測、目標跟蹤等多個領(lǐng)域的先決條件。(剩余14258字)
-
-
- 計算機應(yīng)用研究
- 2025年06期
- 聯(lián)邦學(xué)習(xí)中隱私保護聚合機制綜述...
- 基于區(qū)塊鏈的車聯(lián)網(wǎng)數(shù)據(jù)共享綜述...
- 基于改進型多模態(tài)信息融合深度強...
- 基于生成對抗網(wǎng)絡(luò)與漸進式融合的...
- 基于特性分流的多模態(tài)對話情緒感...
- 面向視覺-語言模型的遞進互提示...
- 多維度交叉注意力融合的視聽分割...
- 基于多模態(tài)表征學(xué)習(xí)的自動音頻字...
- 基于改進行為克隆算法的機器人運...
- 基于混合深度強化學(xué)習(xí)的云制造云...
- 考慮故障因素的多機器人動態(tài)任務(wù)...
- 基于物理信息強化學(xué)習(xí)的無人駕駛...
- 基于改進多目標鯨魚優(yōu)化算法的云...
- 基于ABSA與動態(tài)少樣本提示的...
- 改進自適應(yīng)大鄰域搜索算法及其在...
- 基于信息素矩陣優(yōu)化蟻群算法求解...
- 融合局部-全局歷史模式與歷史知...
- 一種面向情緒壓力分布外檢測的多...
- 基于句子轉(zhuǎn)換和雙注意力機制的歸...
- 基于多層特征融合與增強的對比圖...
- 使用NGN算法改進不平衡數(shù)值數(shù)...
- 一種基于終端策略的近似漣漪擴散...
- 融合混合提示與位置感知的突發(fā)事...
- 面向說話人日志的多原型驅(qū)動圖神...
- 鄰域變異的黑猩猩多峰優(yōu)化算法...
- 基于增強型差分進化算法求解廣義...
- 面向可重構(gòu)陣列的CNN多維融合...
- 一種用于機器聲音異常檢測的AR...
- 基于數(shù)據(jù)驅(qū)動的WSN故障檢測框...
- 一種面向軟件眾包的眾包工人選擇...
- 邊緣計算中動態(tài)服務(wù)器部署與任務(wù)...
- 基于自適應(yīng)差分進化算法的時間敏...
- 基于LCVAE-CNN的多任務(wù)...
- 基于多擾動策略的中文對抗樣本生...
- 基于用戶選擇的魯棒與隱私保護聯(lián)...
- 云醫(yī)療環(huán)境下策略可更新的多權(quán)威...
- SP-CPGCN:用于塵肺病分...
- 基于多級多特征混合模型的白血病...
- 結(jié)合多尺度特征與局部采樣描述的...
- 迭代偽點云生成的3D目標檢測...
- 分層蒸餾解耦網(wǎng)絡(luò)的低分辨率人臉...
- 基于運動分割的動態(tài)SLAM聯(lián)合...
- 基于預(yù)測劃分卷積神經(jīng)網(wǎng)絡(luò)的全景...