特黄三级爱爱视频|国产1区2区强奸|舌L子伦熟妇aV|日韩美腿激情一区|6月丁香综合久久|一级毛片免费试看|在线黄色电影免费|国产主播自拍一区|99精品热爱视频|亚洲黄色先锋一区

聯(lián)邦學(xué)習(xí)中隱私保護(hù)聚合機(jī)制綜述

  • 打印
  • 收藏
收藏成功


打開文本圖片集

Survey of privacy-preserving aggregation mechanisms in federated learning

Qiu Jiana,Ma Haiyinga?,Wang Zhanjun ,Shen Jinyua (a.SchoolofclecofUi China)

Abstract:Asanewdistributed machine learning(DML)framework,F(xiàn)Lcanefectively protectthelocaldata privacyof participantsbyaggregatingthelocalmodelparametersuploadedbyparticipantstotraintheglobalmodel.However,theselocal model parameters still have the risk of revealing the privacy of participants. As a critical step in FL , the privacy-preserving aggregation ( PPAgg )mechanism has become a key technology for addressing privacy issues.This paper first introduced the concept of FL and its associated privacyand security threats.It then highlighted the core ideas and key proceduresof PPAgg mechanisms by integrating existing privacy-preserving techniques inFL.This paper analyzed typical PPAgg mechanisms indetail,focsingontheirprimaryadvantagesandlimitations,aswellasthespecificapplicationscenarioswhereheyweresuitable.Finall,this papersummarized andanalyzed curent PPAgg mechanisms,explored emerging challenges anddevelopment directions for FL ,and proposed potential solutions to address these issues.

Key words:federated learning(FL);privacy-preserving;aggregation mechanism;blockchain;securemulti-partycomputation

0 引言

機(jī)器學(xué)習(xí)(ML)作為實現(xiàn)人工智能的一種重要手段,利用收集的原始數(shù)據(jù)訓(xùn)練特定場景下的數(shù)據(jù)模型,以達(dá)到使機(jī)器模擬人類行為的目標(biāo)。(剩余30283字)

目錄
monitor