基于物理信息強(qiáng)化學(xué)習(xí)的無人駕駛車輛跟馳控制模型

打開文本圖片集
中圖分類號(hào):TP181 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1001-3695(2025)06-012-1691-07
doi:10.19734/j. issn.1001-3695.2024.11.0473
Physics-informed reinforcement learning-based car-following control model for autonomous vehicles
Zhou Ruixiangla,Yang Dalb,Zhu Liling2+ (1.a.ScholeicoptiouUit China;2.School ofBusiness,SichuanNormal University,Chengdu 61o1oo,China)
Abstract:Car-folowing controlisafundamental technique forautonomous driving.Inrecentyears,einforcementlearning hasbeenwidelyadopted incar-folowing tasks,enabling models toexhibit strong learning andimitationcapabilities.However, reinforcement learning-based modelsface chalenges such aspoor interpretabilityandunstableoutputs,which pose potential safetyrisks.Toaddresstheseissues,thispaper proposedaphysics-informedreinforcementlearningcar-following model.The model incorporatedvehicledynamics,defined continuous stateandaction spaces,andintegrated threeclasicalcar-following models withreinforcementlearning to enhancestabilityand interpretability.Itconstructedasimulationenvironmentbyusing PythonadtheSUMOtraficsimulatortotrainthePIRL-CFmodel.Comparativeexperiments wereconductedagainsttraditional car-folowing modelsandmainstreamdeepreinforcementlearning models(DDPGandTD3).Experimentalresultsshowthat the PIRL-CF model improves the proportion of comfort zones by 8% compared to deep reinforcement learning models. Additionaly,itincreasestheminimumtime-to-colisionbyO.3sandtheaverageheadwaydistancebyO.21scomparedtotraditional models.Theseresultsdemonstratethat thePIRL-CFmodelachieves abalanceofsafety,comfort,anddri-ving effciency in car-following tasks,providing an efective solution for autonomous driving decision-making.
Key Words:vehicle folowing;reinforcement learning;depth deterministic strategy gradient;physical information
0 引言
近年來無人駕駛技術(shù)受到了世界范圍內(nèi)的廣泛關(guān)注,其中車輛跟馳控制是無人駕駛的基礎(chǔ)控制技術(shù)之一。(剩余18010字)