基于多層特征融合與增強(qiáng)的對(duì)比圖聚類(lèi)

打開(kāi)文本圖片集
Contrastive graph clustering based on multi-level feature fusion andenhancement
Li Zhiming τ1a,1b,1c,2 ,Wei Hepinglat,Zhang Guangkangla,You Dianlong ρ,a,lb,lc,2 (1.a.Schloffotionee&Ein,yoatofofareEgigfberoc,eybofor ComputerVirtalhlog&stmIntegationofHbeiProinceYashnUniersityQiangdaHbei,hina;.S search Institute ofYanshan University,Yanshan University,Shenzhen Guangdong 518o63,China)
Abstract:The majorityofexisting contrastivegraph clustering algorithmsfacethe following issues:theyignorethelow-level featuresand structural informationextracted byshalownetworkswhen generatingnoderepresentation.Thealgorithms neither fullutilizehighorderneighbornodeinformationnorintegrateconfidenceinformationwithtopologicalstructureinformationto construct positive sample pairs.Toaddress theabove issues,thispaper proposed acontrastive graph clustering algorithmbased onmulti-evelfeaturefusionandenhancement.Tealgorithmfirstlyintegratednodefeaturesextractedfromdiferentnetwork layerstoenrichthelow-levelstructural informationofodes.Itthenaggegatednodeinformationthroughthelocaltopolgical correlationsandglobalsemanticsimilaritiesbetweennodestoenhancethecontextualconstraintconsistencyofnoderepresentations.Finaly,combiningconfidenceinformationandtopologicalstructureinformation,thealgorithmconstructedmoreig quality positivesamplepairs to improvetheconsistencyof intra-clusterrepresentation.Theexperimental results showthat CGCMFFEhas excelent performance on four widelyused clustering evaluation metrics.Theoretical analysis and experimental studyunderscoretherucialroleoflow-levelodefeatures,hig-orderneighbornodeinformation,confidence,andtopological structure information in the CGCMFFE algorithm,providing evidence for its superiority.
Key words:multi-level feature fusion;contrastive graph clustering;unsupervised learning
0 引言
深度圖聚類(lèi)是一種利用深度學(xué)習(xí)將圖中節(jié)點(diǎn)數(shù)據(jù)映射到低維稠密向量空間,并以無(wú)監(jiān)督的方式將節(jié)點(diǎn)表示劃分為若干個(gè)不相交簇的技術(shù)[1]。(剩余14750字)