基于支持向量機和BP神經(jīng)網(wǎng)絡的天津市水產(chǎn)品冷鏈物流需求預測研究

打開文本圖片集
Abstract: Inorder toimprove theacuracyofdemandforecasting forcoldchainlogisticsofaquatic products,thispaperusesa forecasting methodbasedonsupportvector machines.ThispaperfirstusesGreyRelationalAnalysistoselectrelevantindicators affectingdemandforecastingforcoldchainlogisticsofaquaticproducts,andtheninputssampledataintothemodelforlearning. Finally,amodelisconstructedtodescribethenonlinearreltionshipbetweenaquaticproductcoldchainlogisticsdemandand influencing factors.Thepapertakesthecoldchainlogisticsdemandof Tianjinaquaticproductsasan example,andthesiulation resultsshowthatsupportvector machineshavehigherpredictionacuracythanBPneuralnetworks inaquaticproductcold chainlogisticsforecasting,sotheuseofsupportvectormachineforecastingmodelhasabroaderaplicationprospectinaquatic product cold chain logistics demand forecasting.
Key Words: aquatic products; cold chain logistics; demand forecasting; support vector machines; BP neural networks
0引言
“冷鏈”是一種包括從生產(chǎn)、加工、儲存、運輸?shù)戒N售等各階段的溫度控制在內的一套系統(tǒng),以確保商品的新鮮度和質量。(剩余5333字)