基于支持向量機(jī)和BP神經(jīng)網(wǎng)絡(luò)的天津市水產(chǎn)品冷鏈物流需求預(yù)測研究

打開文本圖片集
Abstract: Inorder toimprove theacuracyofdemandforecasting forcoldchainlogisticsofaquatic products,thispaperusesa forecasting methodbasedonsupportvector machines.ThispaperfirstusesGreyRelationalAnalysistoselectrelevantindicators affectingdemandforecastingforcoldchainlogisticsofaquaticproducts,andtheninputssampledataintothemodelforlearning. Finally,amodelisconstructedtodescribethenonlinearreltionshipbetweenaquaticproductcoldchainlogisticsdemandand influencing factors.Thepapertakesthecoldchainlogisticsdemandof Tianjinaquaticproductsasan example,andthesiulation resultsshowthatsupportvector machineshavehigherpredictionacuracythanBPneuralnetworks inaquaticproductcold chainlogisticsforecasting,sotheuseofsupportvectormachineforecastingmodelhasabroaderaplicationprospectinaquatic product cold chain logistics demand forecasting.
Key Words: aquatic products; cold chain logistics; demand forecasting; support vector machines; BP neural networks
0引言
“冷鏈”是一種包括從生產(chǎn)、加工、儲(chǔ)存、運(yùn)輸?shù)戒N售等各階段的溫度控制在內(nèi)的一套系統(tǒng),以確保商品的新鮮度和質(zhì)量。(剩余5333字)