基于BP神經(jīng)網(wǎng)絡(luò)的網(wǎng)約車服務(wù)質(zhì)量研究

打開文本圖片集
中圖分類號:F572 文獻(xiàn)標(biāo)志碼:A DOI: 10.13714/j.cnki.1002-3100.2025.12.014
Abstract:Toexplorethekeyfactorsafecting thequalityofonlineride-haiingservices,aBPneuralnetworkisusedto construct anonlineride-hailing servicequality model.The paperuses MIVtoanalyzetheimportanceof influencing factorsand appliesK-meansclusteringmethodtoanalyzetheheterogeneityofonlineride-hailingpassengers.Theresultsindicatethat factorssuchasdriversatisfaction,travelcosts,traveltime,operatingtimerange,andtraficsafetyplayakeyoleintheoeall servicesatisfactionofonlineride-halingservices,andthecorrespondingcountermeasuresareproposedbasedontheimportance of above-mentionedfactors.Usingpassngergender,age,averagemonthlyhouseholdincome,andfrequencyofonlineridehailing usageasclusteringvariables,fourdiferentcharacteristicsofolieridehailingpasengergroupsareidentified.Thepaperprovides a theoretical basis and practical guidance for improving the quality of online ride-hailing services.
Key Words: online ride-hailing; service quality; BP neural network; MIV; K-means
0引言
隨著Uber、Lyft、滴滴出行、Grab各種網(wǎng)約車平臺(tái)的興起,網(wǎng)約車逐漸成為人們?nèi)粘3鲂械闹匾M成部分。(剩余6289字)