一種融合神經(jīng)與遺傳的食物推薦算法

打開文本圖片集
關(guān)鍵詞:食譜推薦;食物選擇;雙種群遺傳算法;神經(jīng)網(wǎng)絡(luò);多目標(biāo)優(yōu)化;禁忌搜索算法中圖分類號:TN911.23-34;TP391.3 文獻(xiàn)標(biāo)識碼:A 文章編號:1004-373X(2025)10-0173-06
Abstract:Peoplepaymoreandmoreatentiontothenutritionandbalanceoftheirdiet,thedemand forfood choices is also higher.Inalusiontotheproblemsoflackofnutrientbalance,lackof diversityandtime-consumingformulationofexisting recipes,adoublepopulationneuralnetwork-geneticalgorithm(DDNT-GA)algorithmisconstructedbyfusingneural networksand combiningdual-populationgeneticalgorithmNSGA-Itogeneratespecificrecipes.Inthisalgorithm,theneuralnetwork isused tolowerthefitnessofoverlyfitindividualstoeffectivelypreventflingintolocaloptima.Individualswithlowfitessare removedtoformanelitestrategy,screenoutthemostsuitable individuals,andimprovetheeficiencyofthemodelwhile achievingfoodnutritionbalance.Byoptimizingtheneuralnetworkandintroducing theregularizationDropoutstrategy,the trainingspeedisimproved.ByusingtheimprovedNSGA-Igeneticalgorithmandincorporatingthedual-populationidea,the taboosearchalgorithmisusedinthesub-populationtoprevent thegenerationofsimilarrecipesbymeansofthetaboolist,soas torealizetherecipediversification.Theexperimentalresultsshowthat,incomparisonwithdepgeneticalgorithms(GA-D,BPGA,NT-GA,JANUS),DDN-GAalgoritmcanincreasethefitnssby11.3%andshortenthetrainingtie.Theresultingipe notonlyhasdiversechangesinfoodombinationsbutalsoimprovestheefiiencyofselectingrcipes,andhasertainpractical value in consumer recipe formulation.
Keywors:reciperecommendation;foodselection;dual-populationgeneticalgorithm;neural network;multi-objective optimization; taboo search algorithm
0 引言
隨著經(jīng)濟(jì)全球化和城市化步伐的快速推進(jìn),社會生活節(jié)奏亦隨之加快。(剩余8495字)