特黄三级爱爱视频|国产1区2区强奸|舌L子伦熟妇aV|日韩美腿激情一区|6月丁香综合久久|一级毛片免费试看|在线黄色电影免费|国产主播自拍一区|99精品热爱视频|亚洲黄色先锋一区

基于動(dòng)態(tài)提示池的股票趨勢(shì)預(yù)測(cè)終身學(xué)習(xí)算法

  • 打印
  • 收藏
收藏成功


打開(kāi)文本圖片集

中圖分類號(hào):TN919-34;TP391 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1004-373X(2025)10-0063-08

DOI:10.16652/j.issn.1004-373x.2025.10.011 引用格式:,,,等.基于動(dòng)態(tài)提示池的股票趨勢(shì)預(yù)測(cè)終身學(xué)習(xí)算法[J].現(xiàn)代電子技術(shù),2025,48(10):63-70.

Abstract:Stockdatabelongs tostreamingdatawithadistributionthatchangesovertime,making itextremelychallenging topredictstocktrends.Existingforecastingmethodsadapttothelatestdatadistributionbyretrainingmodelsonarollngbasis, neglectingrepetitivepaternsinhistoricaldata,resultingincatastrophicforgetingandadecreaseinmodelprediction performance.Toaddressaboveissue,aPoolTrainalgorithmisproposed.Inthisalgorithm,theknowledge learnedfromeach retrainingofthemodelisstoredinadynamichintpool,alowingittorememberoldknowledgewhilelearningnewtasks. Acordingtotheknowledgeinthedynamicselectioncombinationhintpol,thecommon hintscancompletediferentdata distribution tasks.TheexperimentalresultsontheCSI3OOdatasetshowthat,incomparisonwiththecurrentoptimalalgorithm DDG-DA,thePooTrainalgorithmcanimprovetheinformationcoefficent (IC),informationcoeffientratio(ICIR),rank informationcoefcient(RankIC),andrankinformationcoeffcientratio(RankICIR)by11.5%,11.41%,0.2%,and34.69%, respectively.Itshowsthattheproposedalgorithmcanrealizebeterresultsinpredictingstock trends,providingvaluable reference information for investors.

Keywords:stock trendprediction;dynamiccuepol;lifelong learning;rollingtraining;corelationcoefficent;information coefficient

0 引言

股票趨勢(shì)反映著國(guó)家的宏觀經(jīng)濟(jì)政策,影響著投資者的經(jīng)濟(jì)利益,預(yù)測(cè)股票趨勢(shì)已成為機(jī)器學(xué)習(xí)領(lǐng)域的研究熱點(diǎn)之一]。(剩余13418字)

目錄
monitor