基于LeNet-RES的室內(nèi)聲源區(qū)域定位算法

打開(kāi)文本圖片集
關(guān)鍵詞:室內(nèi)聲源定位;麥克風(fēng)陣列;神經(jīng)網(wǎng)絡(luò);相位變換加權(quán)廣義互相關(guān)函數(shù);信號(hào)處理;房間脈沖響應(yīng)中圖分類(lèi)號(hào):TN912-34;TP183 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1004-373X(2025)10-0020-05
Abstract:Undertheconditionsoflowsignal-to-noiseratio(SNR)andhighreverberation,indorsoundsourceregional localizationbecomesmorechalenging.Inordertosolvethisproblem,aneuralnetworkLeNet-RESisdesigned,whichuses residualblockstoimproveLeNet,therebyimprovingtheperformanceofthenetwork.Thedatasetforindoorsoundsourceis obtainedbysimulating theroomimpulseresponseofan8-araycuboid microphonearay.Thesignalreceivedbythemicrophone is processed intoframes,ndthegeneralizedcrosscorelationPHAse transformation (GCC-PHAT)betweeneachframesignalsis calculated.Thisfunctionisarrngedintotwo-dimensionaldataasinputfeatures.Thefialnetworkmodelistrainedbytakigthe rompartitionarealabelasthenetworkoutput.Intheexperiment,thepositioningaccracyofthetwoneuralnetworkswas tested whenthenumberofroompartitionswas8and16,respectively.Theresultsshow thatunder thesameSNRconditions,the accuracyofLeNet-RES-16is 81.33% when thenumber of room partitionsis16 and the reverberation time is O.6s,which is 23% higherthanthatofLeNet-16;underthesamereverberationconditions,theaccuracyofLeNet-RES-16is84.16%whenthe numberofpartionsis16andtheSNRisO,whichis29%higherthanthatofLeNet-16.Theregionallocalizationperformanceof LeNet-RES is better than that of LeNet under various SNR and various reverberation times.
Keywords:indoorsound sourcelocalization;microphonearray;neural network;generalizedcrosscorelation PHAse transformation; signal processing;room impulse response
0 引言
傳統(tǒng)室內(nèi)聲源定位采用麥克風(fēng)陣列信號(hào)處理算法來(lái)實(shí)現(xiàn),被廣泛應(yīng)用于智能家居、安防監(jiān)控、大型會(huì)議、車(chē)載系統(tǒng)等多個(gè)領(lǐng)域[1-5]。(剩余7727字)