面向衛(wèi)星通信的非線性選代學習混沌通信

打開文本圖片集
關鍵詞:衛(wèi)星通信;混沌通信;選代學習;長短期記憶神經網絡;混沌同步質量;參數(shù)優(yōu)化中圖分類號:TN911.7-34;TP391.41 文獻標識碼:A 文章編號:1004-373X(2025)10-0015-05
Abstract:Inalusion tothedemand forsecure transmission performanceinsatelitecommunication,especially in applicationscenarioswithoutsecurepayloads,achaoticcommunicationmodeloptimized bytheimprovednonlinear iterative learning isproposed.Themodeltrainingof theencryptedsignalmixedwithchaoticcariersignalsandrawinformationina specificratioisconductedbymeansof thelngshort-term memoryneuralnetwork(LSTM)toobtainneuralnetworkmodelhighly consistentwiththeparametersofthelasertransmiter,soastosolvetheproblemofincompletematching betweenthereceiver andtransmitersystemparametersinchaoticcommunicationsystems.Inordertofurtherimprovethesynchronizationqualityof chaoticsignals,iterativelearningisintroducedtoconducttheparameterotimizationoftheLSTM.Thedecryptionrecognition rateof theproposednonlinearchaoticcommunicationsynchronizationmodelbasedonimprovedLSTMisfinallstableat 94.07% ,which is 4.03% and 1.82% higher than those of the radial basis function (RBF) neural network chaotic secure communicationmodelandthechaoticsecurecommunicationmodelbasedonconvolutionalneuralntwork,respectivelyerifying that the proposed communication model has good comprehensive performance.
Keywords:satelitecommunication;chaoticcommunication;iterativelearning;longshort-termmemoryneuralnetwork; chaotic synchronization quality;parameter optimization
0 引言
近年來,全球各國航天技術發(fā)展迅猛,以星鏈和千帆為代表的低軌道通信衛(wèi)星成為研究熱點。(剩余5731字)