特黄三级爱爱视频|国产1区2区强奸|舌L子伦熟妇aV|日韩美腿激情一区|6月丁香综合久久|一级毛片免费试看|在线黄色电影免费|国产主播自拍一区|99精品热爱视频|亚洲黄色先锋一区

一種直流配電網(wǎng)電能質(zhì)量擾動識別方法

  • 打印
  • 收藏
收藏成功


打開文本圖片集

引用格式:,,.一種直流配電網(wǎng)電能質(zhì)量擾動識別方法[J].現(xiàn)代電子技術(shù),2025,48(10):118-126

關(guān)鍵詞:直流配電網(wǎng);電能質(zhì)量;擾動識別;DBSCAN聚類;功率譜密度;核主成分分析;麻雀搜索算法;支持向量機(jī)中圖分類號:TN86-34;TM711 文獻(xiàn)標(biāo)識碼:A 文章編號:1004-373X(2025)10-0118-09

Abstract:With theincreaseof powerelectronicdevicesconnectedtothepowergrid,direct-current (DC)distribution networksaresuperiortotraditionaldistributionnetworksintermsofstrongtransmissonperformance,reducedlinelosses,and newenergyconsumption,graduallybecominganew trendin futuredistributiondevelopment.Toensurethestableoperationof the DC distributionnetworkandensure powerqualityanimproved sparowsearch algorithm-support vector machine (ISSA-SVM) powerqualitydisturbanceidentificationmethodbasedonkernelprincipalcomponentanalysis(KPCA)featuredimensionality reduction is proposed.Theformationmechanismsofvariouspowerqualityisueswerethoroughlyexplored,andsixfeatureswere extractedbasedonwaveformanalysis.TheDBSCANclusteringmethodisusedtodetectthepresenceofoutliersanddetermine whethertouseKPCAtoreducethedimensionalityoffeatures,enabling themtoachievegoodclusteringindiferentdata situations;The ISSAisusedtooptimizetheparametersofSVM,andtheSVMmodelisretrainedusingtheoptimizationresults. Theexperimentalresultsshowthattheproposedmethod has highaccuracyandcanefectivelyidentifypowerqualitydisturbance signals.

Keywords:DC distributiongrid;powerquality;disturance identification;DBSCANclustering;powerspectral density kernel principal component analysis;sparrow search algorithm;support vector machine

0 引言

隨著新型電力系統(tǒng)的建設(shè),相比于交流配電網(wǎng)而言,直流配電網(wǎng)具有靈活易控、傳輸損耗小,可提升電能質(zhì)量、可良好地接受各種新型直流能源以及減少成本等優(yōu)點(diǎn)[。(剩余9432字)

目錄
monitor