基于ICEEMDAN-PE-GDBO-LSSVM的風(fēng)電功率預(yù)測

打開文本圖片集
中圖分類號:TN911.7-34;TM614 文獻(xiàn)標(biāo)識碼:A 文章編號:1004-373X(2025)10-0057-06
Abstract:Withthehighpenetrationofrenewableenergy,especiallywind power,thepowergrid isfacingunprecedented chalengesofuncertaintyandvolatity.Inordertoacuratelypredictwindpower,acombinedmodelbasedonimproved completeensemble empirical mode decompostionwith adaptivenoise (ICEEMDAN)-permutation entropy(PE)-improved dung beetle optimizationalgorithm(GDBO)-least support squaresvector machine (LSSVM) isproposed.ICEEMDANis used to decompose thewindpowerdata toreducethecomplexity.Thecomponentsobtainedafterdecompositionareagregatedaccording toPE,andthenthekeyparametersofLSSVMareoptimizedbymeansofGDBOalgorithm toobtain thebestpredictionmodel. Theoptimizationmodelisusedtopredictandsuperimposetheaggregationcomponents toobtain the totalpredictionresult.The experimentalverification isconductedbasedonthedomesticwindfarmdataset.Ttheresultsshowthattheproposed method has high predictionaccuracyandtheroot meansquare errris 61.39%lowerthan thatofthesingle LSSVMmodel,whichhasa broader application prospect in engineering practice.
Keywords:wind power prediction; ICEEMDAN; GDBO; PE;improved complete ensemble empirical mode decomposition; LSSVM; component polymerization
0 引言
隨著社會對環(huán)境保護(hù)和可持續(xù)發(fā)展的重視程度不斷提升,清潔能源產(chǎn)業(yè)正經(jīng)歷前所未有的蓬勃發(fā)展。(剩余6339字)