面向知識圖譜的網(wǎng)絡(luò)信息自監(jiān)督強化學(xué)習(xí)推薦模型

打開文本圖片集
引用格式:.面向知識圖譜的網(wǎng)絡(luò)信息自監(jiān)督強化學(xué)習(xí)推薦模型[J].現(xiàn)代電子技術(shù),2025,48(10):142-146
關(guān)鍵詞:知識圖譜;網(wǎng)絡(luò)信息;自監(jiān)督;強化學(xué)習(xí);推薦模型;交互信息;特征提?。幌嗨贫扔嬎阒袌D分類號:TN711-34;TP182 文獻(xiàn)標(biāo)識碼:A 文章編號:1004-373X(2025)10-0142-05
Abstract:Inorder todeeplyunderstandandmine thebehavioralcharacteristicsof user historicalnetworkinteraction information,dynamicallextractchangesinuserinteractionbehaviorandachievepersonalizedrecommendationofnetwork information,aknowledgegraph basednetwork informationself-supervisedreinforcementlearningrecommendationmodelis constructed.Inthemodel,aknowledgegraphofusernetworkinformationinteractionbehaviorisonstructedtoclearlydisplay user'shistoricalnetwork information interactionbehavior.Thedynamicchangesofuserbehaviorintheknowledgegraphcanbe capturedefectivelybymeansofthefeatureextractionmodelbasedonself-supervisedreinforcement learningtoavoidthe negativeimpactofpopularityias,soastoextractthefeaturesof historicalnetworkinteractioninformation.Basedonknowledge graphsimilaritycalculation,thenetworkinformationentitieswithsimilarfeatures touserhistorical interaction informationare recommendedtorealizetheaccurateandpersonalizedrecommendations.Theexperimentalresultsverifiesthatafter recommending online movie information resources to users,the click play conversion rate can reach 96.83% ,and the personalized recommendation effect of online information is improved significantly.
Keywords:knowledgegraph;network information;self supervision;reinforcement learning;recommendationmodel; interactive information; feature extraction; similarity calculation
0 引言
隨著社交媒體、電子商務(wù)和在線視頻等領(lǐng)域的繁榮發(fā)展,網(wǎng)絡(luò)信息呈現(xiàn)出多樣化、海量化和快速更新的特點,這使得用戶難以從海量信息中篩選出符合自己興趣和需求的內(nèi)容。(剩余5834字)