面向海量數(shù)據(jù)場景的生成對抗網(wǎng)絡(luò)推薦算法

打開文本圖片集
引用格式:,,.面向海量數(shù)據(jù)場景的生成對抗網(wǎng)絡(luò)推薦算法[J].現(xiàn)代電子技術(shù),2025,48(10):71-75.
關(guān)鍵詞:海量數(shù)據(jù)場景;生成對抗網(wǎng)絡(luò);長短期記憶網(wǎng)絡(luò);推薦算法;動態(tài)序列;個性化推薦;目標函數(shù)中圖分類號:TN919.2-34;TP391 文獻標識碼:A 文章編號:1004-373X(2025)10-0071-05
Abstract:Masivedataoftencontainscomplexuserbehaviorpatterns,itematributesandtheirrelationships,whichoften havenon-linearcharacteristics.Traditional generativeadversarial network (GAN)mayfacechallngesinnonlinear modeling whenprocesingsequencedata.Inordertoefectivelycapturethelong-shortterminterestchangesofusers,enrichthediversity ofcontent,enhancetheprocessingabilityandstabilityinmassivedatascenarios,agenerativeadversarialnetwork recommendtionalgorithmformassivedatascenariosisproposed.Inthelong-shorttermmemorynetwork(LSTM),theuser's behaviorpaterns towardsthedatasceneareusedasinputtooutput the dynamicsequenceof long-shorttermdatascenesof interesttotheuser.TheLSTMiscombinedwithGANtoformanL-GANrecommendationmodel.Inthismodel,thelong-short termdynamicsequencesoutputbyLSTMareinputintothegeneratorofGAN,andfalsesamplessimilartorealdatascenarios aregeneratedbyoptimizingthelossfunction.Thefakesamplesareinputintothediscriminatortogetherwiththerealdata scenes,andtheauthenticityisidentifiedbymeansofitsobjectivefunction.Afterrepeatedcompetitionandtraining,thegeerator anddiscriminatorcanformanaccuraterecommendationnetwork,soastofinallyoutputarecommendationlistofdatascenesthat meetthe user's interests.Theexperimental resultsshow that the proposed algorithmcan acuratelycapture the nedsof users when processing massive data scenes,and make eficient and comprehensive personalized recommendations.
Keywords:masivedatascenario;generative adversarial network;long-short term memory network;recommendation algorithm;dynamic sequence;personalized recommendation;objective function
0 引言
面向海量數(shù)據(jù)場景的推薦算法能夠幫助企業(yè)和平臺更精準地理解用戶需求,為產(chǎn)品研發(fā)和決策提供有力支持。(剩余5746字)