基于自適應(yīng)卡爾曼濾波的生理電信號降噪方法
中圖分類號:TN911.7-34 文獻(xiàn)標(biāo)識碼:A 文章編號:1004-373X(2025)10-0039-06
Abstract:Duringthemeasurementof physiologicalelectricalsignals,thetargetsignalisoftendisturbedbyvariousnoises, includingexteralelectromagneticfieldinterferenceandotherinternalphysiologicalelectricalsignalinterference,themost seriousof whichispowerfrequencyinterference.Thesenoiseinterferenceswillbringgreatinconvenience totheanalysisand processingof physiologicalelectricalsignals.Therefore,anoisereductionmethodbasedonadaptiveKalmanflterisproposedto eliminate thenoiseinterferencesuchaspowerfrequencymixedinphysiological electrical signals.Theadvantagesofadaptive filteringindynamicweightadjustmentandtheacuracyofKalmanfiteringinstateestimationarefullyused toaccurately identifyand processtargetsignalsandnoises.Theelectrocardiogram (ECG),theelectroculogram(EOG)andtheelectromogram (EMG)collctedintheordinary experimentalenvironmentareprocessed,andthetimedomainwaveformandspectrumbeforend afterthealgoritproessingiservd,soastotestfoeectivenesoftedaptiveKalmanfierinteoiseduction ofphysiologicalelectrical signal.TheresultsshowthatthedesignedadaptiveKalman filtercanefectivelyeliminatenoise interferencesuchaspowerfrequency(includingfundamentalfrequencyandharmoniccomponents),makethetargetsignalclearer andcleaner,anddonotdamage theusefulcomponentsofthetarget signal.Theaverage decreaseof thespectralvalueat 50Hz (204號 is notlessthan49.31dB.TheadaptiveKalmanalgorithmcanbeapliedtoavarietyofdiferentphysiologicalelectricalsignals onlybyadjustingsome parameters,whichcaneffectivelyfilteroutthepowerfrequencyandother noiseinterferencemixed inthe originalsignal.Thenoisereductionperformanceisstableandthecomputationalcomplexityislow,whichprovidesamore effective solution for the analysis and processing of physiological electrical signals.
Keywords:adaptivefilter;Kalmanfilter;physiologicallectricalsignal;EOG;powerfrequencyinterference;noiseduction
0 引言
人體的生理電信號,如心電信號(Electrocardiogram,ECG)、肌電信號(Electromyogram,EMG)等,能直接反映身體健康狀況,因此被作為評估人體一些生理功能的重要參數(shù),為遠(yuǎn)程醫(yī)療、實(shí)時(shí)監(jiān)控、醫(yī)學(xué)檢測以及新興的腦-機(jī)接口等領(lǐng)域提供了重要的研究基礎(chǔ)[1-3]。(剩余7467字)
-
-
- 現(xiàn)代電子技術(shù)
- 2025年10期
- 基于數(shù)字孿生的煙葉智能烤分過程...
- 基于AFFRLS-MIAUKF...
- 面向衛(wèi)星通信的非線性選代學(xué)習(xí)混...
- 基于LeNet-RES的室內(nèi)聲...
- 基于帶差分?jǐn)_動的改進(jìn)PSO的P...
- 最小化時(shí)變收斂率和節(jié)點(diǎn)能耗的功...
- 基于自適應(yīng)卡爾曼濾波的生理電信...
- 輪速傳感器功能驗(yàn)證集中監(jiān)控系統(tǒng)...
- 融合數(shù)字孿生與聲紋識別的礦用機(jī)...
- 基于ICEEMDAN-PE-G...
- 基于動態(tài)提示池的股票趨勢預(yù)測終...
- 面向海量數(shù)據(jù)場景的生成對抗網(wǎng)絡(luò)...
- 邊緣計(jì)算下的絕緣子缺陷小樣本檢...
- YOLOv7-VSS輕量化橘瓣...
- 基于CMA-ES算法的無人機(jī)群...
- 基于能量路由器的微網(wǎng)群優(yōu)化調(diào)度...
- 考慮負(fù)荷適應(yīng)度的“源網(wǎng)荷儲”優(yōu)...
- 計(jì)及需求響應(yīng)的含電-氨-電環(huán)節(jié)...
- 一種直流配電網(wǎng)電能質(zhì)量擾動識別...
- 基于多群自適應(yīng)協(xié)同粒子群優(yōu)化算...
- 基于模型辨識的靈活接地有源配電...
- 面向知識圖譜的網(wǎng)絡(luò)信息自監(jiān)督強(qiáng)...
- 基于聯(lián)動人侵檢測的云服務(wù)零信任...
- 六維力傳感器輸出信號采集系統(tǒng)研...
- 考慮雙重補(bǔ)償需求響應(yīng)和碳交易的...
- 基于相空間重構(gòu)的定子繞組端部機(jī)...
- 一種融合神經(jīng)與遺傳的食物推薦算...
- 基于聯(lián)合最大均方差異的軸承跨工...