YOLOv7-VSS輕量化橘瓣外觀檢測(cè)模型

打開文本圖片集
DOI:10.16652/j.issn.1004-373x.2025.10.014 引用格式:,等.YOLOv7-VSS輕量化橘瓣外觀檢測(cè)模型[J].現(xiàn)代電子技術(shù),2025,48(10):85-91.
中圖分類號(hào):TN911.23-34文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):1004-373X(2025)10-0085-07
Abstract:Inallusion to the problems of slow speedandlowaccuracyof orange petal appearance detection in canned citrusproduction,aswellasthehigherparametercountofmainstreamdetectionmodels,alightweightorangesegment appearancedetectionmodel,OO-,ispropsed.Inthemodel,animprovedEcientVietworkisitroducedbysing theHardSwish activation function as the backbone.The mapping similaritybetween diferentdetection heads isreduced by inputingfeaturesatdiferentlevels,whichaleviatesredundantcalculations,andenhancesthenetwork'sfeatureextraction capability bymeansofcascaded groupatention mechanism.Aslim-neck modulethat fuses thepropertiesof standard convolutionanddeepseparableconvolutionisreferenced toreducethesizeofthemodelwhilemaintaining highaccuracy.In orderto furtherreduce the model sizeandspeedupinference spee,SPPCSPC isreplaced with the SPPFstructure.Inorderto alignwiththepositionalcharacteristicsoforangesegmentsinthedataset,theMPDIoUlossfunctionisusedtoimprovethe regresionacuracyof the predicted bounding boxes.The experimentalresults showthatthe proposedorange segmentappearance detection model is63.81%smalerin size compared to YOLOv7,whilerealizing a detectionaccuracyof 96.57% .After deploymentandtestingontheJetsonOrinNano,thebalancebetweenmodelsizeanddetectionaccracyissignificantlymproved compared to similar methods,meeting the requirements of the canned citrus production line.
Keywords:orange segment appearance detection;YOLOv7; lightweight;EficientViT; GSConv; Hard-Swish;MPDIoU
0 引言
柑橘罐頭是我國(guó)柑橘加工產(chǎn)業(yè)中最大宗的商品,其柑橘罐頭加工量占世界總產(chǎn)量的 80% 以上。(剩余8786字)