o</sub> 首先,該模型引入利用Hard-Swish激活函數(shù)改進(jìn)后的EfficientViT網(wǎng)絡(luò)作為主干網(wǎng)絡(luò),通過輸入不同層次的特征減少不同檢測(cè)頭的映射相似度,緩解冗余計(jì)算,并通過級(jí)聯(lián)組注意力機(jī)制增強(qiáng)網(wǎng)絡(luò)的特征提取能力;其次,引入一種slim-neck模塊,融合標(biāo)準(zhǔn)卷積和深度可分離卷積的特性,減小模型的規(guī)模,同時(shí)保持高精度;然后,為進(jìn)一步縮小模型體積并加快推理速度,將SPPCSPC替換為SPPF結(jié)構(gòu);最后,為符合數(shù)據(jù)集中橘瓣的位置特點(diǎn),使用MPDIoU損失函數(shù)來提升預(yù)測(cè)框的回歸精度。實(shí)驗(yàn)結(jié)果表明,所提出的橘瓣外觀檢測(cè)模型的大小相比于YOLOv7減小了 63.81% ,檢測(cè)精度達(dá)到了 96.57% ;同時(shí),經(jīng)過在JetsonOrin Nano上部署測(cè)試,模型大小和檢測(cè)精度的平衡性相較于同類型的方法有較大提升,可滿足柑橘罐頭生產(chǎn)線的要求。-龍?jiān)雌诳W(wǎng)" />

特黄三级爱爱视频|国产1区2区强奸|舌L子伦熟妇aV|日韩美腿激情一区|6月丁香综合久久|一级毛片免费试看|在线黄色电影免费|国产主播自拍一区|99精品热爱视频|亚洲黄色先锋一区

YOLOv7-VSS輕量化橘瓣外觀檢測(cè)模型

  • 打印
  • 收藏
收藏成功


打開文本圖片集

DOI:10.16652/j.issn.1004-373x.2025.10.014 引用格式:,等.YOLOv7-VSS輕量化橘瓣外觀檢測(cè)模型[J].現(xiàn)代電子技術(shù),2025,48(10):85-91.

中圖分類號(hào):TN911.23-34文獻(xiàn)標(biāo)識(shí)碼:A

文章編號(hào):1004-373X(2025)10-0085-07

Abstract:Inallusion to the problems of slow speedandlowaccuracyof orange petal appearance detection in canned citrusproduction,aswellasthehigherparametercountofmainstreamdetectionmodels,alightweightorangesegment appearancedetectionmodel,OO-,ispropsed.Inthemodel,animprovedEcientVietworkisitroducedbysing theHardSwish activation function as the backbone.The mapping similaritybetween diferentdetection heads isreduced by inputingfeaturesatdiferentlevels,whichaleviatesredundantcalculations,andenhancesthenetwork'sfeatureextraction capability bymeansofcascaded groupatention mechanism.Aslim-neck modulethat fuses thepropertiesof standard convolutionanddeepseparableconvolutionisreferenced toreducethesizeofthemodelwhilemaintaining highaccuracy.In orderto furtherreduce the model sizeandspeedupinference spee,SPPCSPC isreplaced with the SPPFstructure.Inorderto alignwiththepositionalcharacteristicsoforangesegmentsinthedataset,theMPDIoUlossfunctionisusedtoimprovethe regresionacuracyof the predicted bounding boxes.The experimentalresults showthatthe proposedorange segmentappearance detection model is63.81%smalerin size compared to YOLOv7,whilerealizing a detectionaccuracyof 96.57% .After deploymentandtestingontheJetsonOrinNano,thebalancebetweenmodelsizeanddetectionaccracyissignificantlymproved compared to similar methods,meeting the requirements of the canned citrus production line.

Keywords:orange segment appearance detection;YOLOv7; lightweight;EficientViT; GSConv; Hard-Swish;MPDIoU

0 引言

柑橘罐頭是我國(guó)柑橘加工產(chǎn)業(yè)中最大宗的商品,其柑橘罐頭加工量占世界總產(chǎn)量的 80% 以上。(剩余8786字)

目錄
monitor