特黄三级爱爱视频|国产1区2区强奸|舌L子伦熟妇aV|日韩美腿激情一区|6月丁香综合久久|一级毛片免费试看|在线黄色电影免费|国产主播自拍一区|99精品热爱视频|亚洲黄色先锋一区

殘差膠囊網(wǎng)絡(luò)在旋轉(zhuǎn)機(jī)械故障診斷中的應(yīng)用研究

  • 打印
  • 收藏
收藏成功


打開文本圖片集

摘要:針對旋轉(zhuǎn)機(jī)械中的故障診斷需求,在傳統(tǒng)的膠囊網(wǎng)絡(luò)中引入殘差塊和模糊C均值聚類算法,構(gòu)建殘差膠囊網(wǎng)絡(luò)故障診斷模型。在殘差膠囊網(wǎng)絡(luò)的基礎(chǔ)上,引入注意力機(jī)制和G-K動態(tài)路由算法,構(gòu)建注意力膠囊網(wǎng)絡(luò)故障診斷模型。仿真分析表明:兩種模型都能對故障進(jìn)行精準(zhǔn)測試,具有較強(qiáng)的表達(dá)能力和泛化能力。

關(guān)鍵詞:旋轉(zhuǎn)機(jī)械;故障診斷;膠囊網(wǎng)絡(luò);殘差塊;注意力機(jī)制

中圖分類號:TP277文獻(xiàn)標(biāo)志碼:B文章編號:1671-5276(2024)06-0244-03

Abstract:To meet the fault diagnosis requirements in rotating machinery, a residual capsule network fault diagnosis model is constructed by introducing residual blocks and fuzzy C-means clustering algorithm in traditional capsule networks. On the basis of residual capsule network, attention mechanism and G-K Dynamic routing algorithm are introduced to build a fault diagnosis model of attention capsule network. Simulation analysis shows that both models can accurately test faults and have strong expressive and generalization abilities.

Keywords:rotating machinery; fault diagnosis; capsule network; residual block; attention mechanism

0引言

在工業(yè)4.0時代的背景下,機(jī)械故障診斷的核心目標(biāo)是利用先進(jìn)的技術(shù)手段提高機(jī)械設(shè)備使用壽命,減少由于機(jī)械故障帶來的經(jīng)濟(jì)損失[1]。(剩余3762字)

目錄
monitor