高分二號(hào)衛(wèi)星影像在變色松樹(shù)遙感監(jiān)測(cè)中的應(yīng)用

打開(kāi)文本圖片集
中圖分類(lèi)號(hào):S763.18 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):2096-9902(2025)12-0006-05
Abstract:Pinewiltdisease,causedbypinewoodnematode(Bursaphelenchusxylophilus),isadevastating forestdiseasethat posesseverethreatstoforestecosystemsThisstudyaimstoapplyGF-2sateliteimageryformonitoringdiscoloredpinetrees andevaluateitsefectivenessbyestablishingadeplearning-basedmonitoringsystemtoenhancetimelinessandacuracy. IntegratingGF-2sateliteremotesensingdatawithUAVaerialimagery,monitoringexperimentswereconductedinGuangning County,Guangdong Province.Imageprocessngtechniques,including Gram-Schmidt(GS)fusionandthe GreenNormalized DiferenceVegetation Index(GNDVI),significantlyimprovedthecontrastbetweendiscoloredpinetreesandtheirbackground. Using adeep learning algorithm for discolored pine tree extraction,the method achieved a precision of 94.65% ,recall of 83.30% andF1-score of 88.61% .The results demonstrate that the GF-2-based identification method ofers high accuracy and can provide reliable data support for precise monitoring of pine wilt disease.
Keywords:pine wilt disease;remote sensing;GF-2;image fusion;evaluation
松材線蟲(chóng)病是我國(guó)森林生態(tài)系統(tǒng)面臨的重大生物威脅之一,對(duì)森林資源造成了嚴(yán)重?fù)p害。(剩余6384字)