基于人工智能的高壓電纜接地故障診斷方法研究

打開文本圖片集
中圖分類號:TM75 文獻標志碼:A 文章編號:2095-2945(2025)19-0044-04
Abstract:Thispaperproposesa faultdiagnosismethod basedondeeplearming tosolve theproblemsoflowpostioning accuracyandslowdiagnosiseficiencyinhigh-voltagecablegroundingfaultdiagnosis.Themethodfirstpreprocessesandextracts featuresonthecolectedcablefaultsignalsthroughwavelettransform,andbuildsafeaturedatasetcontainingmultipleground faulttypes;thendesignsanimprovedconvolutionalneuralnetworkmodelthatintegratestheatentionmechanismandresidual connectionstructure,realizingadaptivelearingandclassficationoffaultcharacteristics;Finall,areal-timefaultdiagnosis systemisdevelopedtoachieverapidfaultlocationandidentification.Experimentalresultsshowthatinthefaultdiagnosisof10\~ 35kVhigh-voltage cables,the fault location accuracy of this method reaches 98.5% ,whichis 15% higher than the traditional method,andtheaveragediagnosistimeisshortenedto2.3seconds,anditstillmaintainsstablediagnosisperforancein complexnoiseenvironments.Thismethodhasbeeapliedintransmisson linefaultdiagnosisofaprovincialpowercompany, providing an effective guarantee for the safe and stable operation of the power system.
Keywords:high-voltagecable;groundfaultdiagnosis;deeplearning;faultfeatureextraction;intellgentdiagnosissystem
近年來,隨著電力系統(tǒng)規(guī)模的不斷擴大和供電可靠性要求的持續(xù)提高,高壓電纜在電力傳輸中的應用日益廣泛。(剩余5841字)