基于ResNet50-CBAM模型的滾動(dòng)軸承故障診斷研究

打開文本圖片集
中圖分類號(hào):TP18 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):2095-2945(2025)19-0001-04
Abstract:Aimingattheshortcomingsintraditionalrollingbearingfaultsignalfeatureextraction,arollingbearingfault diagnosismethodbasedonConvolutionalBlockAtentionModule(CBAM)andresidualnetwork(ResNet5O)isproposed.Thefault signalsintheCaseWesternReserveUniversitydatasetwererandomlyandlocalloverlappedsampled,andthebearingfault signalswereconvertedintotwo-dimensionaltime-frequencydomainimagesusingICEEMDANandHilbert.Thetime-frequency domainimagesweretheninputintotheResNet5O-CBAMnetworkmodel.,trainingandtestingtheaccuracyofthemodel. Convolutionalneuralnetworksandtransferlearningareaddedtothenetworkmodeltosolvetheproblemsofdificultyindata acquisitionandlongtraining time.ExperimentshaveprovedthatResNet5O-CBAMhasstrong faultfeatureextractioncapablities. Compared with other network models,the accuracy rate is 8%~15% higher. Finally,rolling bearing signals are collected on a servosystemexperimentalsimulationplatform,andtheimprovednetworkmodelisusedfordiagnosis.Theresultsprovethatthis diagnosis method has high accuracy in rolling bearing fault diagnosis.
Keywords: rolling bearing; fault diagnosis; ResNet5O-CBAM; network model; data
滾動(dòng)軸承作為設(shè)備隨動(dòng)系統(tǒng)中重要的組件,主要承擔(dān)支撐和旋轉(zhuǎn)的功能,可降低設(shè)備傳動(dòng)軸與支撐部位的摩擦力,同時(shí)為傳動(dòng)軸的軸承提供支撐。(剩余4739字)