基于GAIL方法的魚類個(gè)體運(yùn)動(dòng)策略恢復(fù)方法

打開文本圖片集
Individual fish movement strategy recovering approach based on GAIL
ONG Jinghan12,CHENPengyu,2,XUJun12,YUE Shengzhi12,MIN Zhongyuan2,LIU Xiaoyang12,LIYuanshan 2, 3
(1.School of Information Science and Engineering,Dalian Ocean University,Dalian 116O23,China; 2.KeyLaboratoryofMarineInformationTechnologyofLiaoningProvince,DalianOcean University,Dalian116O23,China; 3.KeyLaboratoryofEnvironmentControledquacultureMinistryofEducationDlianOceanUniversityalian6,Cina)
Abstract:Reinforcementlearninginfishbehaviorstrategiesfaces limitationssuchasbeingconstrainedbypredefinedrules, rewardfunctionsrelyingonpriorkowledge,andaninabilittofullcaptureobjectbehaviorstrategies.Inviewofthis,amethod basedongenerativeadversarialimitation learning(GAIL)isproposedtorecoverindividualmovementstrategiesbyfishswarm movementtrajectorydata.Thestateandactionrepresentationsof individualfisharedesigned,and thedecision-makingprocess offish movementisexpressedwithafullconnectedneuralnetwork.Experimentswereconductedwithonelearerandmultiple individualteacherswhonavigatewiththeVicsek model.ExperimentalresultsdemonstratethattheGAILmethodcanrecover individualfishmovementstrategiesefectively,providinganeffcientstrategylearningapproachappicabletothestudyand simulationofotherbiologicalswarmbehaviors.In-depthanalysisof theswarmbehaviorrevealstheinteractionrulesof individualsandgroupdyamics.Therefore,theproosedmethodofersnewinsightsfortheapplicationofartficialintellgencein biological behavior research.
Keywords:GAIL;fishscholbehavior;movement strategyrecovery;artificial intellgence aplication; Vicsek model; fully connected neural network
0 引言
科學(xué)領(lǐng)域的研究焦點(diǎn)[1-3]。(剩余8941字)