均有改善,定性修復(fù)結(jié)果呈現(xiàn)更加清晰自然。研究證實(shí)該方法對(duì)人臉圖像修復(fù)有較好的效果。-龍?jiān)雌诳W(wǎng)" />

特黄三级爱爱视频|国产1区2区强奸|舌L子伦熟妇aV|日韩美腿激情一区|6月丁香综合久久|一级毛片免费试看|在线黄色电影免费|国产主播自拍一区|99精品热爱视频|亚洲黄色先锋一区

基于注意力機(jī)制和ACT網(wǎng)絡(luò)的人臉圖像修復(fù)

  • 打印
  • 收藏
收藏成功


打開文本圖片集

Face image inpainting based on attention mechanism and ACT network

TENGLin1,2,ZHANGQian12,XU Kaili2 (1.SchoolofData Scienceand InformationEngineering,Guizhou Minzu University,Guiyang 55oo25,China; 2.KeyLaboratoryofPatternRecognitionand InteligentSystemsofGuizhouProvince,Guiyang55O025,China)

Abstract:A faceimage inpainting method basedonconvolutional block atentionmodule(CBAM)andaggregated contextualtransformation(ACT)network isproposed tomakethecompletionofmissingsemanticfeaturesinfacialimages more realisticandtoenhancetherecoveryofdetailedinformation.Inthismethod,thetwobranchesofthebaselinemodelareretained. Inthesemanticandimagfilteringbranches,theCBAMlayersareaddedtocapturethecriticaldetailinformationforfilingthe mising areas intheimages.Thebaseline residual blocksarereplaced withACTresidual blocks,which can preserve therich detailsoutsidethemissingareasandcaptureabundantcontextualinformation.Thismadethesemanticinformationfilinginthis branchmoreaccurate,efectivelyremovedartifactsandenrichedimagedetails.Inthekernelpredictionbranch,thetwomodules areadded toenhancethereceptivefieldandcontextualreasoning perception when extracting image features,makingthedynamic predictionof filtering kernelsmore precise.Thismethod wasvalidatedontheCelebA-HQdataset,showing improvements in quantitative metrics such as PSNR (peak signal-to-noise ratio),SSIM (structural similarity index measure)and L1 . The qualitative repairresultsarealsoclearerandmorenatural.Thestudyconfirmsthattheproposed methodhavegoodeffectivenessforfacial image inpainting.

Keywords:image inpainting; CBAMatentionmechanism;ACTnetwork;encoder-decoder;facial image inpainting;mage filtering

0 引言

圖像修復(fù)是指重建圖像中缺失區(qū)域的任務(wù)。(剩余10343字)

monitor