1</sub> 值提高約 0.65%~5.80% 。-龍源期刊網(wǎng)" />

特黄三级爱爱视频|国产1区2区强奸|舌L子伦熟妇aV|日韩美腿激情一区|6月丁香综合久久|一级毛片免费试看|在线黄色电影免费|国产主播自拍一区|99精品热爱视频|亚洲黄色先锋一区

融合雙通道特征信息的醫(yī)療短文本分類模型

  • 打印
  • 收藏
收藏成功


打開文本圖片集

Medical short text classification model with fusion of dual channel feature information

LI Chen2,LIU Na1,2 ,ZHENGGuofeng1,2,YANGJie1,2,DAOLu1,2 (1.CollegeofComputerScienceandEngineering,NorthMinzuUniversity,Yinchuan75o021,China; 2.TheKey

Abstract:Inviewofthesparsefeatures,semanticambiguitiesandinsuficientextractionofshorttextfeaturesinthe medicalshorttexts,amedicalshorttextclassificationmodelEBDF(ERNIE-BiLSTM-DPECNN-FGM)fusingdual-chanel featuresisproposed.Thepre-trainedmodelisusedtoobtaindynamicwordvectors,whichmadethemodelcontainricher semantic information.Thenthe BiLSTMisusedtoobtainglobaltextfeature informationandthe DPECNNisusedtoobtain deep localtextfeatureinformation.TheFGMadversarialtrainingalgorithmisusedtodisturbancethedatatoimprovetherobustne andgeneralizationabilityofthemodel.Finally,thefeatureinformationofthetwochannelsisfusedtoobtainthefinaltext representation.TheEBDFmodelwascompared with the model withthe better efectontheshorttextdatasetsof three medical fieldsand two general fields.It can be seen that itsaccuracyis improved by about 0.57%\~6.16%,and its F1 value is improved by about 0.65% 3 5.80%

Keywords:medical text mining;short text clasification;feature fusion;BiLSTM; DPECNN;two-channel

0 引言

醫(yī)療行業(yè)是一個數(shù)據(jù)密集型和知識密集型的行業(yè)。(剩余16371字)

monitor