融合雙通道特征信息的醫(yī)療短文本分類模型

打開文本圖片集
Medical short text classification model with fusion of dual channel feature information
LI Chen2,LIU Na1,2 ,ZHENGGuofeng1,2,YANGJie1,2,DAOLu1,2 (1.CollegeofComputerScienceandEngineering,NorthMinzuUniversity,Yinchuan75o021,China; 2.TheKey
Abstract:Inviewofthesparsefeatures,semanticambiguitiesandinsuficientextractionofshorttextfeaturesinthe medicalshorttexts,amedicalshorttextclassificationmodelEBDF(ERNIE-BiLSTM-DPECNN-FGM)fusingdual-chanel featuresisproposed.Thepre-trainedmodelisusedtoobtaindynamicwordvectors,whichmadethemodelcontainricher semantic information.Thenthe BiLSTMisusedtoobtainglobaltextfeature informationandthe DPECNNisusedtoobtain deep localtextfeatureinformation.TheFGMadversarialtrainingalgorithmisusedtodisturbancethedatatoimprovetherobustne andgeneralizationabilityofthemodel.Finally,thefeatureinformationofthetwochannelsisfusedtoobtainthefinaltext representation.TheEBDFmodelwascompared with the model withthe better efectontheshorttextdatasetsof three medical fieldsand two general fields.It can be seen that itsaccuracyis improved by about 0.57%\~6.16%,and its F1 value is improved by about 0.65% 3 5.80%
Keywords:medical text mining;short text clasification;feature fusion;BiLSTM; DPECNN;two-channel
0 引言
醫(yī)療行業(yè)是一個數(shù)據(jù)密集型和知識密集型的行業(yè)。(剩余16371字)