基于級(jí)聯(lián)式逆殘差網(wǎng)絡(luò)的游戲圖像多模態(tài)目標(biāo)精準(zhǔn)辨識(shí)研究

打開文本圖片集
Research on game imagemultimodal objectprecise identification basedoncascadedinverseresidualnetwork
LIUJianzhi
(ShenyangLigongUniversity,Shenyang11oooo, China)
Abstract:Theobjects inthegame have complexfeaturessuch asshape,colorand texture.Inaddition,theobjects appear indiferentperspectives,scalesandpostures,allofwhichincreasethediicultyofbjectrecognition.Acascadediverse residualnetworkcanenhancethemultidimensionalfeaturesoftheobject,andcanrecognizetheobjectefectivelyeveninthe presenceofocclusion,deformation,etc.Therefore,agameimagemultimodalobjectpreciseidentificationmethod basedon cascadedinverseresidual network isproposed.Abackbonenetworkconsisting ofconvolutional layersandcascaded inverse residualmodules basedondepthwiseseparableconvolutiondesignisconstructed.Thisnetworkisused toextract thenputtd gameimage features preliminarily.Thechannelrearrngementisused toenhancetheinformation exchange among channels.The featureenancementnetworkisusedtoupsamplethefeaturemaps learnedbythebackbonenetwork.Themultimodalobject featuresareetractedincombinationwiththemulti-chanelfeaturefusion.Theobjectposition,direction,andotherinforation areoutputedbyapredictionnetwork thatcanachieveclasificationandregressontasks.Sofar,apreciseidentificationof multimodalobjects ingameimagesisachieved.Theexperimentalresultsshowthatthemethodcanachievetheidentificationof thecharacters,text,scene elements andother objects in the gameimages,with atraining lossofonlyabout O.O5andan F1 -score of 0.967. To sum up,the multimodal object recognition effect of game images is good.
Keywords:inverseresidual;;gameimage;;multimodal;channelrearrangement;SIoUlossfunction;objectidentification; convolutional layer;object location
0 引言
度不斷提高,為玩家?guī)砹烁鼮檎鎸?shí)和沉浸式的體驗(yàn),但同時(shí)也給游戲圖像目標(biāo)辨識(shí)技術(shù)提出了更高的挑戰(zhàn)。(剩余5474字)