基于改進U-Net的細胞核圖像分割網(wǎng)絡(luò)

打開文本圖片集
Anucleus image segmentation network based on improved U-Net
SONGWenbo,ZHU Kaiyan,LIU Tong,SONGWeibo (School of InformationEngineering,DalianOceanUniversity,Dalian116O23,China)
Abstract:Deep learning model basedonconvolutional neural network(CNN) haveachieved significantbreakthrough in biomedicalimagesegmentationandhavebeen widelyappliedinpracticalscenarios.Theaccuracyof nucleus imagesegmentation playsacrucialroleinpathologicaldiagnosis.However,theexistingnucleussegmentationalgorithsstillsuferfromisuessuch asfuzzyandadherentboundaries,soanimagesegmentationalgorihmbasedonimprovedU-Netisproposed.Inthemodel,a tripleattentionmoduleisutizedtoenhancefeature focus,andfeaturefusion module,AGgatemodule,andlightweightInception moduleareincorporatedtoimprovesegmentationaccuracy.Theproposedalgorithmwasvalidatedonthe2O18DataScienceBowl (DSB2018)dataset.The evaluationmetrics including IoU(intersectionover union)and DSC reach 81.85%and 90.00% respectively.Experimentalresultsdemonstratethatincomparisonwiththeothersegmentationmodels,theproposedalgorithm exhibitssignificantadvantagesintermsof theconformitybetweensegmentedresultsandgroundtruthlabels,achievingsuperior performance.
Keywords:CNN;deep learning;nucleus segmentation;U-Netnetwork;atentionmechanism;image segmentation
0 引言
細胞核圖像分割作為醫(yī)學(xué)圖像分析的關(guān)鍵一環(huán),扮演著鑒定細胞、了解生物過程以及提高藥物檢測效率的重要角色。(剩余10565字)