基于深度特征融合的惡意軟件檢測方法研究

打開文本圖片集
Research onmalwaredetectionmethodbasedon deep feature fusion
ZHANG Xiaoyu1,2,ZHANGZhenyou1,2 (1.CollegeofArtificial Intellgence,NorthChinaUniversityofScienceandTechnology,TangshanO6321o,China; 2.HebeiKeyLboatrfustrialteligentrcetiorthiaUvesityfienedcholoagsa
Abstract:The features used in the current malwaredetection modelsaresimpleandthe detectionaccuracyof the models islow,andthemodelsfailtoconvergestablyduetoimbalancedcategories,soadeepfeaturefusionbasedmalwaredetection modelisproposed.Theobtainedrawtraficcapturefilesarecleanedtoremoveabnormaldatapackets.Anetworktraffcbasicinformationextractionlibraryisusedtosegmentnetworktraffcinthefomofsesions,obtainrelevantinformationaboutthetraffic,andetractterequiredstatisticalfeatures.ubsequently,tetatisticalfeaturesareeeplyprocssdbyfullyotedlay ersandautoencoders,ffectivelyeliminatingtheinfluenceofnoiseandgeneratingmorerobustfeatures.Next,aone-dimensional convolutional neuralnetwork (1D-CNN)andalong short-termmemory (LSTM)network areusedtoextractspatiotemporalfeatures jointlyandobtaincomprehensivelatentinformation,whicheliminatesunstablemodelconvergencewhilesignificantlyimproving the accuracyof modeldetection.The model was trainedandtestedonamixed datasetof StratosphereIPSandUSTC-TFC2016, and compared with five other models. The model achieves an accuracy of 99.48% and an F1 -score of 97.82% for binary classification tasks,and achieves an accuracy of 93.16% and an F1 -score of 92.69% for multi-classification tasks.The test results show thatthe model in this paper can effectively eliminate the unstable convergence caused by classimbalance.
Keywords:networktraffc;deeplearning;statisticalfeature;temporal feature;spatialfeature;classimbalance;malware classification
0 引言
在數字化時代,惡意軟件成為網絡安全領域的一大威脅,對個人用戶、企業(yè)機構以及整個網絡生態(tài)系統(tǒng)都構成了潛在的危脅。(剩余11628字)