基于深度學(xué)習(xí)和Retinex理論的圖像增強(qiáng)方法

打開文本圖片集
引用格式:.基于深度學(xué)習(xí)和Retinex理論的圖像增強(qiáng)方法[J].現(xiàn)代電子技術(shù),2025,48((13):36-42.
Image enhancement method based on deep learning and Retinex theory
WANG Dexu,WANG Zhifeng,YANWenqiang (Schoolof IntelligentManufacturingandControlEnginering,ShanghaiPolytechnicUniversity,ShanghaiO2oo,Chna)
Abstract:Thisstudyaimstoimproveimagequalityunderlow-lightconditions,primarilyaddressingissuesofreduced visibilityandcolordistortion.BycombiningimageprocesingtechniquesbasedonRetinextheoryandadvancedneuralnetwork algorithms,aninnovativeimageenhancementframeworkisproposed.Thisframeworkconsistsoftwoparts,namedanimage decompositionnetworkandanimageenhancementnetwork.The former isresponsiblefordecomposing theoriginal image into illuminationcomponentandreflectancecomponent,whilethelaterisresponsibleforoptimizing parametersandperformingY correctinbythenaturalimagequalityevaluator(NIQE),adjustingthebrightnessandcontrastoftheilluminationcomponent, andthenre-fusing theilluminationcomponent with thereflectancecomponent,soastoenhanceoverallimagequality.Testson standard datasetsLOLandLOL-V2showthatthe proposed methodoutperformsmost existing image enhancement algorithms in termsof thepeak signal-to-noiseratio (PSNR)andthestructural similarityindex measure (SIM),whichdemonstratesits effectiveness and practicalityin the field of low-light image enhancement.
Keywords:neural network;Retinex theory; NIQE; γ correction; PSNR; SSIM; image enhancement; image decomposition
0 引言
當(dāng)光線不足時,照片質(zhì)量往往會降低,表現(xiàn)為可見度減弱、色彩失真,以及細(xì)節(jié)模糊和不自然的色彩再現(xiàn)[1。(剩余12061字)