基于YOLOv8n的輕量化道路裂縫檢測(cè)算法

打開文本圖片集
Lightweight road crack detection algorithm based on YOLOv8n
TURSUNMamat2,QIUJianzhuo12,ZHUXinglin1,XULi1,2 (1.Collegeof TransportationandLogisticsEngineering,XinjiangAgricultural University,Urumqi83oo52,China; 2.EngieeringResearchCenterforIntelligentTransportation,XinjiangAgriculturalUnversityUrumqi83o52,China)
Abstract:In view of the wideobjectdistribution scale,complexanddiverse featuresand thedemandof dealing witha large numberofdatasetsinautomaticroadcrack detection,alightweightroadcrack detectionalgorithmGCW-YOLO basedon YOLOv8isproposed.Firstly,theglobalatentionmechanismisintroducedintothebackbonenetworktoenhancetheabilityto extractandfuseroadcrackfeaturesfirst,andthentheoriginallossfunctionisreplacdwithWise-IoUlossfunctiontogetbeter featurefocusandreducethelossoffeaturesandclasification inprediction.Finall,thelightweightnetworkstructureGhostNet isintroduced intotheC2fmodule toimprovethefeatureextractioneficiencyofthemodelandreducethecomputational complexity.Experimentswereconductedonaself-madeexpresswaycrack diseasedatasetwithatotalof15116images,andthe generalizationperformanceofthealgorithmwasverifiedonpublicdatasets.Experimentalresultsshow that themeanaverage precision (mAP)oftheproposedalgorithmreaches63.5%,whichisimprovedby6.0%incomparison with thatoftheoriginal model, itsspatial and temporal efficiencyisimproved by 3.0% and 8.5% ,respectively,and itsdetection speed reaches 250 f/s. Thecomparativeexperimentalresults show thattheGCW-YOLOalgorithmcombines the advantagesof lightweightand high detectionaccuracyandshowsgood generalization,soithasgoodpracticalvalueandpromotionprospectinroadmaintenance.
Keywords:road crack detection; deep learning; YOLOv8n;atention mechanism; lightweighting; feature focus
0 引言
公路作為重要的交通基礎(chǔ)設(shè)施,對(duì)促進(jìn)社會(huì)經(jīng)濟(jì)發(fā)展具有重大意義。(剩余10690字)