基于改進(jìn)的ResNet網(wǎng)絡(luò)和特征融合的自標(biāo)跟蹤算法

打開(kāi)文本圖片集
Object tracking algorithm based on improved ResNet network and feature fusion
MENG Weijun',SUN Siwei',MA Sugang1,2 (1.SchoolofomputerScienceandTechnologyXi’anUniversityofPostsandTelecommunications,Xi'an7,Cina; 2SanxiKeytselii
Abstract:Anobject trackingalgorithmbasedonimprovedResNetnetworkand feature fusion hasbeenproposedon the basisoftheATOM5Oalgorithm,soastoenhancetheobjectfeaturesextractedwithresidualnetworks.Anenhancedbotteneck block,integratingbatch-freenomalzation(BF)andposition-awareircularconvolution(ParC),ismploedwitintheReset-50 backbonenetwork.Thisefectivelybolstersthecaptureofglobalinformationandmitigatestheaccumulationoftrackingdrift.For theextractedfeatures,theatentionfeaturefusionmoduleisusedtofurtherenhancetheexpressionabilityofthefeaturesforthe objectbyfusingthedetailsofshallwfeaturesandthesemanticinformationofdepfeatures.Theproposedalgorithmwas validated with the OTB2015,VOT2018 and LaSOT datasets.Itachieves a success rate and precision of 70.2% and 91.1%, respectively,ontheOTB2015dataset,whichisimprovedby1.2%and1.5%,respectively,overthebenchmarkATOM50 algorithm. On the VOT2O18 dataset, its expected average overlap rate saw an increase of 4.4% . On the LaSOT dataset,its success rateand precisionareimprovedby2.4%and2.9%,respectively.Itsaverage tracking spedontheOTB2015dataset reaches 34.3 f/s,ensuring real-time tracking.
Keywords:deep learning;visual tracking; Siamese network;batch normalization;attention mechanism;improved ResNet network
0 引言
目標(biāo)跟蹤是計(jì)算機(jī)視覺(jué)領(lǐng)域的核心問(wèn)題之一,其目的是給定第一幀的單個(gè)目標(biāo),在后續(xù)幀中找到與被跟蹤目標(biāo)最匹配的區(qū)域,并以矩形框的形式表示目標(biāo)的大小和位置。(剩余14508字)