基于FNM-Net的輕量級(jí)遙感目標(biāo)檢測(cè)算法

打開文本圖片集
Lightweight remote sensing object detection algorithm based on FNM-Net
WENBin2,ZHANG Jun1,2 ,WANGJunyin2,WANGZihao2,DINGYifu (1.HubeioalbodtfadropisUst; 2.SchoolofElectricaland NewEnergy,ChinaThreeGorgesUniversity,Yichang 443oO2,China; 3.NanchuanPowerSupply Branch of StateGridChongqing ElectricPowerCompany,Chongqing 4O4o,China)
Abstract:Inviewofthe current challnges inremote sensing object detection,such as low accuracy,slow processing speedsandlargequantityof modelparameters,anFNM-Net,alightweightremotesensingobject detectionnetwork basedonan improvedYOLOv7-tinyarchitecture,isproposed.Firstly,alightweightfeatureextractionnetworkFaster-Netisintroducedto substitutetheoriginalone,soastopreventthenetwork'sexcesiveoverlapoffeaturemaps.Secondlythefocalmodulation moduleisintroducedandthespatialinformationintegrationmodule (SIM)isproposed toconstructanewpathaggregationnetwork thatmitigatesissuesoftheinformationredundancyandtheoverlookof intra-layerfeaturesduringfeaturefusion.Andthen,the multi-fine-graineddetectionheadsaredesignedtoavoidthelargescalevariationsofremotesensingobjects.Finalyapruning method utilizinga layeradaptiveamplitudepruning (LAMP)scoreisemployed to eliminateconnections withminor weights, therebyreducingparameternumberandcomputationalburdenandincreasingthedetectionspeed.Thismethodisvalidatedbythe public RSOD dataset.The results show that the proposed method achieves a 51.2% reduction in parameter number,a 55.2% (20 decrease in FLOPs,a 6.5f/s increase in detection speed,and a 2.1% improvement in mAP (mean average precision) in comparisonwiththoseof thebaseline model.Additionaly,itsgeneralizabilityisconfirmedontheNWPU VHR-1Odataset.
Keywords:remote sensing object detection;FNM-Net; light weight; pruning; improvedYOLOv7-tiny; SIM
0 引言
遙感圖像廣泛應(yīng)用于環(huán)境監(jiān)測(cè)、礦產(chǎn)資源勘探、交通規(guī)劃、災(zāi)害監(jiān)測(cè)與救援、國(guó)防軍事等多個(gè)領(lǐng)域。(剩余11290字)