特黄三级爱爱视频|国产1区2区强奸|舌L子伦熟妇aV|日韩美腿激情一区|6月丁香综合久久|一级毛片免费试看|在线黄色电影免费|国产主播自拍一区|99精品热爱视频|亚洲黄色先锋一区

基于改進(jìn)的灰狼算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的人侵檢測方法

  • 打印
  • 收藏
收藏成功


打開文本圖片集

Intrusion detection method based on improved grey wolf optimization algorithm optimized BPneural network

PENG Qingyuan1, WANG Xiaofeng,2,TANG Ao1,HUA Yingying1,HE Fei',LIU Jianping1,2 (1.SchoolofComputerScienceandEngineering,NorthMinzu University,Yinchuan75oo21,China; 2.KeyLabelsassi

Abstract:Network securityissuesare becoming moreand more prominent in today'sworld.Theintrusiondetection technologyhasbeenrapidlydevelopedasanimportantpartinthefieldofnetworksecurity.Atpresent,BPneuralnetworkis widelyusedinintrusiondetection.However,thweightseletingofthetaditioalBnuraletworkisiaccurate,tsleaing eficiencyislowanditispronetofalingintolocalminima.Fortheaboveshortcomings,anintrusiondetectionmethodbasedon theimproved greywolfoptimization(IGWO)algorithmoptimizedBPneuralnetwork isproposed.TheIGWOalgorithmextends thesearcrangeof thewolf pack bychanging the linearcontrolparametersandadingtheinversecotangentinertia weight strategyinthegraywolfpositionupdateformulatoavoidfalingintothelocaloptimalsolution.Theimprovedalgorithmisused tooptimizetheinitialweightsandthresholdvaluesoftheBPneuralnetwork,andtheoptimizedBPneuralnetworkisappliedto intrusiondetection.TheexperimentalresultsshowthattheIGWOalgorithmhasbeterstability,optimizing eficiencyand optimizingaccuracy,andtheimprovedintrusiondetectionmethodisnotprone tofaling intolocalminima,hasstrong generalization ability,and has high prediction accuracy and reliability.

Keywords:nonlinear control parameter;inertia weight;GWOalgorithm;BPneural network;intrusiondetection;network security

0 引言

隨著網(wǎng)絡(luò)技術(shù)的發(fā)展,計算機(jī)網(wǎng)絡(luò)的安全性受到越來越多的關(guān)注。(剩余10024字)

monitor