基于改進(jìn)的灰狼算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的人侵檢測方法

打開文本圖片集
Intrusion detection method based on improved grey wolf optimization algorithm optimized BPneural network
PENG Qingyuan1, WANG Xiaofeng,2,TANG Ao1,HUA Yingying1,HE Fei',LIU Jianping1,2 (1.SchoolofComputerScienceandEngineering,NorthMinzu University,Yinchuan75oo21,China; 2.KeyLabelsassi
Abstract:Network securityissuesare becoming moreand more prominent in today'sworld.Theintrusiondetection technologyhasbeenrapidlydevelopedasanimportantpartinthefieldofnetworksecurity.Atpresent,BPneuralnetworkis widelyusedinintrusiondetection.However,thweightseletingofthetaditioalBnuraletworkisiaccurate,tsleaing eficiencyislowanditispronetofalingintolocalminima.Fortheaboveshortcomings,anintrusiondetectionmethodbasedon theimproved greywolfoptimization(IGWO)algorithmoptimizedBPneuralnetwork isproposed.TheIGWOalgorithmextends thesearcrangeof thewolf pack bychanging the linearcontrolparametersandadingtheinversecotangentinertia weight strategyinthegraywolfpositionupdateformulatoavoidfalingintothelocaloptimalsolution.Theimprovedalgorithmisused tooptimizetheinitialweightsandthresholdvaluesoftheBPneuralnetwork,andtheoptimizedBPneuralnetworkisappliedto intrusiondetection.TheexperimentalresultsshowthattheIGWOalgorithmhasbeterstability,optimizing eficiencyand optimizingaccuracy,andtheimprovedintrusiondetectionmethodisnotprone tofaling intolocalminima,hasstrong generalization ability,and has high prediction accuracy and reliability.
Keywords:nonlinear control parameter;inertia weight;GWOalgorithm;BPneural network;intrusiondetection;network security
0 引言
隨著網(wǎng)絡(luò)技術(shù)的發(fā)展,計算機(jī)網(wǎng)絡(luò)的安全性受到越來越多的關(guān)注。(剩余10024字)