方面普遍優(yōu)于其他模型(YOLOv3、YOLOv5、YOLOv6及FasterR-CNN),同時(shí)在參數(shù)量和檢測(cè)時(shí)間上也表現(xiàn)出顯著的優(yōu)勢(shì),兼具高效性與輕量化特點(diǎn)。改進(jìn)后的YOLOv8模型能夠更高效地捕獲關(guān)鍵信息,充分融合多維度特征,合理分配計(jì)算資源,從而提升識(shí)別準(zhǔn)確率。-龍?jiān)雌诳W(wǎng)" />

特黄三级爱爱视频|国产1区2区强奸|舌L子伦熟妇aV|日韩美腿激情一区|6月丁香综合久久|一级毛片免费试看|在线黄色电影免费|国产主播自拍一区|99精品热爱视频|亚洲黄色先锋一区

基于改進(jìn)YOLOv8模型的玉米葉斑病快速識(shí)別方法

  • 打印
  • 收藏
收藏成功


打開文本圖片集

關(guān)鍵詞:玉米;葉斑病;改進(jìn);YOLOv8模型;快速識(shí)別

中圖分類號(hào):S126;TP391.41 文獻(xiàn)標(biāo)識(shí)碼:A

文章編號(hào):0439-8114(2025)05-0160-07

DOI:10.14088/j.cnki.issn0439-8114.2025.05.025 開放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID):□

A rapid identification method for maize leaf spot disease based on the improved YOLOv8 model

ZHANGLu,WUXue-lian (Economics and Management School,Yangtze University,Jingzhou ,Hubei,China)

Abstract:Toachieverapididentificationofmaizeleafspotdisease,thedetectionperformanceoftheimprovedYOLOv8modelwasoptimizedbyintegratingtheGlobalAtentionModule(GAM),Slim-Necklightweightmodule,andInner-CIoUlossfunction.Compared with the original YOLOv8 model,the improved YOLOv8 model(GAM + Slim-Neck+Inner-CIoU)showed increases of 4.15% in Precision, 5.51% in Recall, 3.91% in mAP @ 0.5,and 11.35% in mAP @[0.5: 0.95],while the number of parameters and detection time decreased by10.39% and 3.42% ,respectively. The improved YOLOv8 model outperformed other models(YOLOv3,YOLO v5 ,YOLO v6 ,and Faster R-CNN) in Precision,Recall,mAP @ 0.5,and mAP ,while also demonstrating significant advantagesinparameterquantitynddetectiontime,combining higheficiencywithlightweightcharacteristics.TheimprovedYOLOv8model eficientlycaurediticaliforation,fullyitegatedultdimesioalatures,ndratioallloatedomputatioalrouces,thereby enhancing recognition accuracy.

Key words:maize;leaf spot disease;improvement;YOLOv8 model; rapid identification

隨著農(nóng)業(yè)生產(chǎn)規(guī)模的擴(kuò)大和氣候變化的影響,玉米葉斑病已成為全球玉米生產(chǎn)中的主要病害。(剩余9061字)

目錄
monitor