基于iTransformer與LSTM模型融合的農(nóng)場氣溫多步預(yù)測

打開文本圖片集
關(guān)鍵詞:iTransformer;LSTM;模型融合;多特征;農(nóng)場氣溫;多步預(yù)測
中圖分類號:TP183 文獻(xiàn)標(biāo)識碼:A
文章編號:0439-8114(2025)05-0134-07
DOI:10.14088/j.cnki.issn0439-8114.2025.05.021 開放科學(xué)(資源服務(wù))標(biāo)識碼(OSID):
Multi-step temperature prediction for farms based on iTransformer and LSTM model fusion
XIE Qi, ZHANG Tai-hong,LIU Hai-peng
(Colegefftteala of Intelligent Agriculture,MinistryofEducation,Xinjiang Agricultural University,Urumqi830o52,China)
Abstract:Toadressthenonlinearandomplexcharacteristicsoffarmtemperaturedata,basedonmeteorologicalstationdatafrom HuaxingFarminChangji City,XinjiangUygurAutonomous Region,sevenfeaturesincludingtemperature,groundinfraredtemperature,dewpointtemperaturerelativehumidityaporpressure,stationpressure,andsea-levelpressurewereselectedasmodelinput features throughSpearancorelationanalysis,andomparativeanalsisascoductedamongtheiransformer-LSTodelras former model,LSTMmodel,iTransformermodel,andTransformer-LSTMmodel.TheresultsshowedthattheiTransformer-TM modelachievedthebestperformance.Comparedwiththeoptimal baselinemodeliTransformer,thismodelreducedtherootmean square error(RMSE)by 13.72% ,mean absolute error ( MAE )by 14.12% ,and mean absolute percentage error ( MAPE )by 13.61% TheiTransformer-LSTMmodelcouldefectivelyextracttime-series featurerepresentations,capturelong-termdependencies,and characterize globalaturesandcontextualinformation,makingitsuitableforulti-featureulti-steptimeseries temperatureprediction tasks.
Key Words:iTransformer;LSTM;model fusion;multi-feature; farm temperature;multi-step prediction
氣候變化可能引發(fā)極端天氣事件,如干旱、洪澇、低溫和霜凍,這些現(xiàn)象對農(nóng)業(yè)生產(chǎn)造成嚴(yán)重風(fēng)險。(剩余9038字)