LSTM和EnKF在農(nóng)業(yè)土壤降雨徑流模擬中的應(yīng)用

打開文本圖片集
中圖分類號:P333.1 文獻標(biāo)識碼:A文章編號:0439-8114(2025)05-0070-10DOI:10.14088/j.cnki.issn0439-8114.2025.05.011開放科學(xué)(資源服務(wù))標(biāo)識碼(OSID):
Application of LSTM and EnKF methods in agricultural soil rainfall-runoff simulation
LINLin 1 ,GAO Zhao-tian1,DINGYi-jia1,HU Xiao-long1,ZHANG Zhong-bin2 (1.Schoolof Water Resources and Hydropower Engineering,Wuhan University,Wuhan 43oo72,China; 2.Instituteof Soil Science,ChineseAcademyof Sciences,Nanjing211135,China)
Abstract:Terelatioshipetwenrainfallandrunoffisofgreatsgnificaceforteallcationofwaterresourcsandtheprotetionof waterandlandresousiagriculuralareas,utitisfult todealwithteainfall-unofprossunderdiferentlndueypes insmall watersheds.Thelongshort-termmemorymodel(LSTM)andtheXin'anjiangmodelcombinedwithensembleKalmanfilter (EnKF)technologywereusedtoexplorethesimulatioefectivenessofdata-drivenmachinelearning(ML)modelonrainfal-runoff processunderdiferentlandusepaterns,andthesimulationefectiveness wascomparedwiththatofSWAThydrological model.The estimationefectivenesofEnKFonhdrologicalparametersensemblesinheXin'njangmodelandthepattsoffilestiated parameters werestudied,andterunoffprocessesfordiferenagriculturallndusetypesbasedonthecalibratedparametersweresimulated.Theresultsshowedthattherunoffvaluewaseasiertolearninthecaseofhighrunoffwithaslightlysmallslopeandthelowrunoffprocess ithalargeslope.ThesimulationaccuracyandstabilityoftheSWATmodelwerenotasgodas thoseoftheLSTMmodel, butSWATmodelcouldreflctthelocalsoilhydrologicalconditionstoacertainextent,whichwasconvenientforgeneticanalyis.The EnKFtechologyhadthefunctionsofparameterupdateandparameterestimation,whchcouldoptimizetheunoffsimulatiofectiveness of the Xin'anjiang model.
KeyWords:ainfallrunofsiulation;datadriven;dataassiilation;LSTM;EnKF;Xinaangmodel;landusepae;ptiie forecasting
中國南方小流域的紅壤區(qū)生態(tài)系統(tǒng)面臨著嚴(yán)重的水土流失、土壤酸化、肥力退化、季節(jié)性干旱及土壤污染等問題[12],是由于該區(qū)域降雨時空分布不均勻以及不合理的開發(fā)利用,因此研究區(qū)域內(nèi)氣候、植被、土壤等對降雨徑流有影響的因素成為土壤生態(tài)環(huán)境等領(lǐng)域的熱門話題
隨著科技的不斷發(fā)展,數(shù)據(jù)處理與機器學(xué)習(xí)等技術(shù)提高了各類模型的精度與構(gòu)建效率。(剩余10061字)